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Abstract

Data from the “Turbulence Modeling Resource” website for turbulent flow over
an NACA-0012 airfoil is analyzed to determine the convergence behavior of three
second-order CFD codes: CFL3D, FUN3D, and TAU. The convergence of both
integrated properties and pointwise data are examined. Several different methods
for estimating errors and computing convergence rates are compared. A high-order
extension to the Richardson extrapolation is developed that improves the accuracy
of the mesh limit values and provides a quantitative estimate of the threshold of the
asymptotic regime. The coefficient of total drag exhibits second-order convergence
for all three codes, and convergence is monotone over a sequence of 7 grids. Other
force coefficients are not so well behaved. The convergence rates of the viscous
component of drag on the three finest grids ranges from ≈3.0 for CFL3D to ≈1.0
for FUN3D. The three codes are converging to similar but not identical solutions.
The largest differences between the codes are in the coefficient of lift for which the
difference between CFL3D and FUN3D is greater than 10−4. The best agreement
occurs in the viscous component of drag, which is the only force component for
which all three codes are converging towards each other at a rate of second-order.
The agreement between the two unstructured grid codes is good with all properties
except lift converging towards common values at a rate of second-order. No one
code was universally better than the other. The TAU code has the lowest error in
total drag, FUN3D has the lowest error in lift, and CFL3D has the lowest error in
the viscous component of drag.
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Nomenclature

Variables

R grid refinement ratio

S(p,R) error scale factor

Cd coefficient of drag

Cl coefficient of lift

Cp coefficient of pressure

Cdp coefficient of drag due to pressure

Cdv coefficient of drag due to shear

Cfx coefficient of friction in x-direction

h mesh size

p degree of order property

U generic solution property

U(h) solution, function of grid size

Ue exact solution

x streamwise coordinate direction

Greek

α error coefficient

∆c difference in property between two
codes

∆h difference in property between two
grids

∆r difference between property and
Richardson extrapolation

ε(h) error, function of grid size

σ convergence rate

Accents, Supscripts, and Superscripts

(.)e exact property

(.)i property on grid-i

(.)r Richardson extrapolation of a
property
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1 Introduction

The Turbulence Modeling Resource (TMR) website (ref. 1) provides a large col-
lection of CFD solution data for a variety of test cases that can be used by the
turbulence modeling community to verify model implementations within their own
codes. The data available at the TMR website has been generated by “previously
validated” codes. One test case in particular provides data from three CFD codes
for the solution of RANS equations for flow over an NACA–0012 airfoil at a Mach
number of 0.15, a Reynolds Number of 6·106, and an angle of attack of 10 degrees.
The simulations use the Spalart-Allmaras turbulence model, and extensive grid re-
finement studies are presented as verification that all three codes have successfully
implemented that turbulence model. The grid refinement studies make use of sev-
eral families of consistently and uniformly refined grids. For the current analysis,
“Consistent and uniform refinement” means that each coarse grid in the sequence
is a subset of the next finer grid produced by retaining the odd-numbered points in
each coordinate direction. As such, the data from this case is an excellent resource
for a more detailed analysis of the grid convergence of the data. Reference 2 reports
on the grid refinement study of this case. The main objective of this article is to pro-
vide a more detailed analysis of the convergence behavior of the three CFD codes as
applied to this problem. A secondary objective is to demonstrate several methods of
evaluating the convergence behavior, examine strengths, weaknesses, and potential
pitfalls of the methods.

The three CFD codes that produced the data used in this analysis are CFL3D
(refs. 3,4), FUN3D (refs. 5,6), and TAU (ref. 7). The CFL3D and FUN3D codes were
developed at the NASA Langley Research Center, and the TAU code was developed
by DLR (Deutsches Zentrum für Luft- und Raumfahrt). CFL3D is a structured
grid code, whereas FUN3D and TAU are unstructured grid codes. However, the
grids used in the simulations are hexahedral-based meshes. All three codes are
production codes commonly used for 2D and 3D turbulent flow simulations and
are formally second-order accurate. Further, all three codes have previously been
shown to produce second order convergence for smooth flows and grids. All three
CFD codes use an iterative solution method to solve the RANS equations. It is
reported in reference 2 that data produced by FUN3D and TAU codes results from
iteratively converging all residuals to machine zero. For data produced by CFL3D,
the residual of the continuity equation has been converged to 10−13, the residual of
the turbulence model has been converged to 10−7, and aerodynamic force coefficients
have converged to 5 significant digits. However, all data files contain data written to
10 significant digits. Reference 2 provides additional references to recent applications
of these codes that are relevant to this test case.

Accurate and reliable CFD methods are expected to produce results that have
an order property, p, in which the error in the solution, and in most quantities
derived from the solution, are expected to behave proportional to hp in the limit as
the mesh size h goes to zero. The error is often modeled simply as

ε(h) ≡ U(h)− Ue ≈ αhp (1)

in which Ue denotes the exact solution, α is an unknown coefficient, and p is the
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order property of the CFD method. The parameters of this model are often deter-
mined by fitting data obtained from a grid refinement sequence. There are a number
of benefits of knowing (or having estimates of) the parameters of the error model,
other than simply estimating error. For example, the cost and resources required
to further reduce the error to a particular target level is readily estimated. Many
engineering tools for design and optimization rely on gradient-based optimization
techniques, which in turn, assume linearizations and Taylor expansions of the solu-
tion are sufficiently accurate. Perhaps the oldest practical application of the error
model is to provide an estimate of Ue by use of the Richardson extrapolation (ref. 8).

It is important to note that the exact solution introduced in equation 1 is the
solution to the continuum mathematical problem that is approximated discretely by
the CFD solver. The processing of validating that a particular CFD solution is a
sufficiently accurate representation of a physical problem of interest is a separate
and independent process. However, it should be clear that validation of the physical
accuracy cannot reliably occur if the discretization error is unknown or is known to
be poor.

A more realistic but perhaps impractical representation of the error is an infinite
polynomial of the form

ε(h) ≡ U(h)− Ue ≈
∞∑
k=0

αkh
p+k (2)

in which the coefficients αk depend on both the discretization and the solution to
the particular problem under consideration. Equations of this form can be derived
for the discretization error of simple discretizations and idealized cases (e.g., lin-
ear scalar equations, linear discretizations, uniform grids) by evaluating the Taylor
expansion of the discrete equations, also called modified equation analysis (ref. 9).
However, the solution error is not directly proportional to the discretization error,
as error may propagate and diffuse through the problem domain in a manner simi-
lar to the solution itself. Integrated properties are further subject to cancelation of
errors, possibly resulting in an oscillatory convergence pattern. An integrated prop-
erty may cross the exact (but unknown) value at several points in a grid refinement
sequence before settling to an asymptote; while the underlying solution may be con-
verging monotonically over most of the domain. Nonetheless, in realistic complex
applications, it is generally assumed that the solution error is of a functional form
similar to equation 2, and therefore, that the asymptotic behavior is well modeled
by equation 1.

The task of evaluating the convergence properties involves not only determining
estimates of error and convergence rates, but equally and perhaps more importantly,
determining whether or not a particular grid refinement sequence even includes
the asymptotic regime. Attempts to fit the simple error model, equation 1, to a
measured error metric using a grid sequence outside of the asymptotic regime can
lead to highly inaccurate estimates of the error and convergence rates. The ability
to recognize this situation often requires experience and engineering judgement.

The second section analyzes the convergence of integrated force coefficients of
lift and drag, and of the viscous and inviscid components of drag (or specifically,
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shear-stress and pressure contributions, respectively). The convergence rates, error
estimates, and estimates of the limit solution are evaluated by two methods for
each force coefficient predicted by each code. The grid convergence of code-to-
code comparisons are also presented and analyzed. The Richardson extrapolation is
applied to determine limit conditions, and also to provide an enhanced examination
of the grid convergence of individual components and of code-to-code comparisons.
Finally, a high-order extension to the Richardson extrapolation is introduced to
provide enhanced limit conditions and to provide a quantitative measure of the
upper threshold of the asymptotic regime.

The third section analyzes the convergence of point values of the pressure coef-
ficient, Cp, and the x component of the shear stress, Cfx , again using two different
methods for assessing the error. Code-to-code comparisons of pointwise data are
also presented. The fourth section explores the facility of the pointwise convergence
analysis to diagnose potential problems with the data.

As the main thrust of this work is to analyze the convergence of data from the
TMR website, and standard approaches for convergence analysis are well established
in literature (ref. 10 and references therein), a detailed description of the analysis
techniques is relegated to an Appendix of this article. However, the Appendix does
provide new arguments and evidence regarding the application and interpretation of
some of the traditional approaches. The Appendix also provides additional details
concerning the high-order extension to the Richardson extrapolation introduced in
the third section.

2 Convergence of Integral Properties

Convergence of the coefficients of lift and drag (Cl, Cd, Cdp , and Cdv) are ana-
lyzed. The data for this analysis was taken from the following files downloaded on
1/16/2018 from the TMR website:

cfl3d results sa nopv 2ndorderturbadvection withN.dat,

fun3d results sa nopv withN.dat and

tau results sa nopv withN.dat.

Each file contains data for three different grid families, identified as Family I, II or
III. This analysis only considers grid Family II, which consists of a sequence of seven
grids. The grids are numbered with 0 denoting the finest grid, and each unit increase
indicates a 2X coarsening of the grid. Properties associated with a particular grid
will be identified by an integer suffix (e.g., h0 denotes a representative mesh size of
the finest grid, Un ≡ U(hn), and Cl,n denotes Cl on the n-th grid). The files provide
data produced by the FUN3D and TAU codes for all seven grids and data produced
by CFL3D on the six finest grids.

An increasingly common practice for assessing the convergence of flow properties
predicted by 2nd-order CFD codes is to present data as a function of the square
of the mesh size. A linear behavior of such plots is taken as confirmation that the
CFD code is second order, and that the results are within the asymptotic regime.
However, this approach has several deficiencies illustrated in figures 1(a-l). Each
row presents a different property, and each column presents the data at a different
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Figure 1. Lift and drag coefficients plotted vs. (h/h0)
2 viewed on multiple scales.
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scale. The left column of plots presents a scale that contains all grids, the right
column presents a scale that shows only the four finest grids, and the middle column
presents an intermediate scale. The first attribute of this approach, apparent in all
12 plots, is that the h2 behavior clusters the fine grid data toward the origin such
that data of only four grids are distinctly discernible at any particular scaling.
Consequently, detection of evolving trends requires viewing the data on several
scales. The clustering would intensify if such an approach were extended and applied
to a high-order method, and any ability to observe a linear trend would be further
diminished. Additionally, this approach requires subjective assessment as to how
straight is straight enough to declare that a result is essentially second order. This
point is well illustrated by Cl and Cdv , for which both the left and middle column
plots present data that is somewhat straight for some codes, but only the third
column (the finest grids) reveals that they are not so. A concise and quantitative
approach that requires less subjective evaluation would be preferable.

The methods used for estimating error are described briefly here, and further
details are provided in the Appendix. Throughout this work, ∆x will be used to
denote an error estimate in which the subscript “x” identifies the particular method
of estimation. The first method uses the Richardson extrapolation (refs. 8, 11)
computed from the two finest grids as a surrogate for the exact solution, Ue, and
estimates the error as the difference between the solution and the Richardson ex-
trapolation: ∆rUi ≡ Ui−Ur,0 in which U denotes any solution property of interest.
The Richardson extrapolation is computed as Ur,i = (Rpi Ui − Ui+1)/(R

p
i − 1) in

which Ri ≡ hi+1/hi is the ratio of mesh sizes.
The second error estimate is simply the difference between a solution property

on successive grids, optionally scaled by a function of the design order p (if known),
∆hUi ≡ S(p,Ri−1)(Ui − Ui−1). The scaling function S(p,R), derived in the Ap-
pendix, shifts the second estimate in a manner that will make it equal to ∆rUi if
the data are in the asymptotic regime. The scaling does not affect the slope of the
curve or the convergence rate computed from the curve, but serves only to facilitate
visual comparisons.

Because all three CFD codes have been previously verified to be second order, the
design order of p = 2 is used for both the Richardson extrapolation and the scaling
function S(p,R). For the current data sets with constant R = 2, the Richardson
extrapolation becomes Ur,i = (4Ui−Ui+1)/3, and the scaling becomes the constant
S(p,R) = 4/3. Contrary to established practices (refs. 10, 12, 13), the Appendix
provides arguments for preferring the design order (if known) over the order property
computed from the data. Further, the Appendix provides arguments for avoiding
the use of any extrapolations if the design order is not known, and a reasonable
guess cannot be made. Exact agreement between the two error measures on grid-1
(h = h1) occurs because both methods invoke the same formulas, assumptions, and
data about that point (e.g., the simple error model, equation 1, with an assumed
order fit to the two finest grids). Also, the slope of ∆r between the two finest
grids will be exactly the order used to compute the Richardson extrapolation. This
slope should not necessarily be viewed as indicative or predictive of behavior if
the mesh were refined further, although it may be. However, this segment of the
curve provides a reference “sight line” by which convergence on coarser grids can be
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3 Convergence of Local Properties

Convergence of local pointwise properties Cp and Cfx are analyzed and presented in
figures 7 through 10. The data for this analysis was taken from the following files
downloaded on 12/6/2017 from the TMR website:

cfl3d cp sa nopv.dat, cfl3d cf sa nopv.dat,

fun3d cp sa nopv.dat, fun3d cf sa nopv.dat,

tau cp sa nopv.dat, and tau cf sa nopv.dat.

The files contain coefficients for only the four finest grids of the grid sequence. It
is noted that the data in these files are located at grid nodes, and also that the
FUN3D and TAU codes are node-centered finite-volume methods that store the
dependent flow variables at the node locations. However, CFL3D is a cell-centered
finite-volume method, and the data have been interpolated to the node locations in
order to facilitate the comparisons. Thus, the CFL3D results contained in the above
files have been subjected to more post processing than either the FUN3D or TAU
results. In contrast, the integrated data discussed in the last section were computed
by each code using its own internal procedures and presumably was not subject to
unnecessary interpolations.

Figure 7 presents pointwise error estimates of Cp and the associated convergence
rate as a function of the arc length around the airfoil, s. The error estimate is
computed from the difference between Cp on pairs of meshes, ∆hCp,i. Generally the
estimated errors are higher on the upper surface than on the lower surface for all
three codes. All three codes have localized peaks in the error estimate near leading
and trailing edges. The leading edge peaks, at s = 0, are of similar magnitudes
for CFL3D and TAU codes, while the leading edge peak for FUN3D is lower. The
trailing edge peaks are generally comparable to or lower than the leading edge peaks.
Away from these peaks, the error estimates for FUN3D are the lowest of the three
codes. Estimated error levels of CFL3D and TAU are similar, with those of the TAU
code being slightly lower. The TAU code exhibits the most monotone convergence.
The convergence rate computed from the three finest grids is well below design value
of 2.0, but the rate is increasing with refinement. The convergence rates of FUN3D
and CFL3D computed from the three finest grids is close to the design value of
2.0, however, the two coarser grids exhibit oscillatory convergence and are clearly
outside of the asymptotic regime. The CFL3D data appear to be contaminated
with numerical noise, but otherwise, it has the most uniform convergence rate with
respect to s.

Figure 8 presents an analysis of the same data in which the error is estimated
by ∆rCp. As with the integral properties examined in the previous section, ∆rCp ≡
∆hCp on grid-1, because of the common assumptions and formulas shared between
the Richardson extrapolation and the scaling function, S(p,R). Also, the drop
in error between the two finest grids is exactly 4.0 and the convergence rate is
exactly 2.0, due solely to the assumptions made in the Richardson extrapolation.
In practice, the convergence rates based on the Richardson extrapolation for the
two finest grids should probably not be presented without sufficient caveats so as to
avoid misleading a reader into believing that the simulation data are converging at

16



visually judged.
The formula for the convergence rate, simplified for the current case with con-

stant ratio grid refinement, is the same for both error estimates and is given by

σi = log

[ |∆Ui+1|
|∆Ui|

]
/ log(2.0) (3)

in which ∆ without a subscript will be used whenever a formula or a point of dis-
cussion applies to any form of error estimate. Note that the computed convergence
rate, σi, is distinguished from the order property of the simulation method, p, to
emphasize that σi is the result of a curve fit to data produced by the simulation,
whereas p denotes a theoretical property of the simulation method. It is expected
that σi will approach p in the limit of the mesh size going to zero.

Figure 2 presents quantitative error estimates and convergence rates for lift and
drag coefficients. The upper set of curves in each plot shows an estimate of the error
computed by the two methods. The lower set of curves gives the corresponding
convergence rate. The total drag coefficient and the contribution from pressure, Cd
and Cdp , both converge at a constant rate of ≈2.0 over the entire grid sequence
for all three codes. The estimated errors for CFL3D and FUN3D are similar to
each other and larger than that of the TAU code by a factor of two to three. Both
methods of estimating the error give essentially the same result.

The uniform convergence characteristics of Cd and Cdp over such a broad range
of grid sizes is uncommon. In figures 2a and c, Cl and Cdv exhibit a more typical
pattern in which the convergence of the error goes through a transition in which
the influence of high-order terms is evident on the coarser grids. The transition
can be monotone or oscillatory, and oscillatory transitions will appear differently
for the different error estimates. The response of the different error estimates to an
oscillatory error is examined more closely in the Appendix Section A.1. The simple
error model given by equation 1 is a monotone equation, and any attempt to fit it to
a nonmonotone data set is problematic. If the sign of the error estimate changes as
the mesh is refined, then obviously the error estimate has passed through zero, and
it can take on small values. Small values in either the numerator or the denominator
of equation 3 will result in unreasonably low or high values of the convergence rate.
In this work, abnormally high or low convergence rates are treated as spurious values
and are excluded from the plots.

The error estimates for Cl are the highest of the four coefficients examined.
FUN3D has the lowest error estimate for Cl. CFL3D is about an order of magnitude
higher and is the highest. Convergence of Cl is oscillatory for all three codes with the
transition occurring above grid-2. The transition does not noticeably influence the
computation of the convergence rate on grid-1, and all three codes are converging
at a rate of ≈2.0 on the three finest grids.

The estimated errors in the viscous contribution to drag, Cdv , are the lowest
of the four coefficients examined. The estimated error of the CFL3D code is an
order of magnitude lower than that of FUN3D and TAU codes. Convergence of Cdv
undergoes a transition between grid-1 and grid-4, and the influence of higher-order
terms is evident above grid-1. The transition is monotone for CFL3D and TAU
codes, and both error estimates give similar results. FUN3D exhibits oscillatory
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behavior, which is more pronounced in the ∆r error estimate. Although all three
CFD codes are converging on the finest grids, the convergence rates on grid-1 are
influenced by the transition region, and none of the codes are showing a definitive
trend of second-order convergence. On grid-1, CFL3D is converging at a rate of
≈3.0 and FUN3D is converging at a rate of ≈1.0. The TAU code is converging at a
rate of 1.7 and is closest to its design order.

Contributions to drag from the pressure and viscous terms are similar in mag-
nitude (≈0.006). However, the estimated error of the viscous terms, ∆Cdv , is lower
than that of the pressure contribution by a factor ranging from approximately two
for the TAU code, to one to two orders of magnitude for CFL3D and FUN3D. Con-
sequently, the pressure contribution dominates the error estimate and convergence
rate computations of the total drag, Cd. In the remainder of this work, plots of Cd
are omitted whenever they are similar to Cdp .

While the above figures do indicate that all properties are converging for all
three CFD codes, they do not indicate whether the codes are converging to the
same set of values. Figure 3 presents the difference between pairs of codes, denoted
by ∆c, as a function of mesh size. The viscous component of drag, Cdv , is the only
component for which all three codes are converging to the same value on the finest
grid. The FUN3D and TAU codes are converging to the same Cdp (Cd is not shown
but is similar to Cdp). Although the ∆cCdp between FUN3D and CFL3D is small,
the values have crossed and have begun to diverge on the three finer grids, and the
divergence has stalled at ≈2.5 · 10−6 finest grid. The largest difference between the
codes occurs in the lift coefficient. The convergence rates have dropped noticeably
on the finest grid suggesting that convergence may stall on yet finer grids. The error
estimates ∆rCl, are considerably smaller than ∆cCl and are on a convergent trend.
Thus, the slowing of the convergence cannot be attributed to an interaction of the
error estimates.

Table 1 gives the Richardson extrapolation for the four coefficients for each of the

h/h0

10 20 30 40
0

2

4

h/h0

10 20 30 40
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

FUN3D - CFL3D
FUN3D - TAU

| cCL|

(a) Difference in Cl

h/h0

10 20 30 40
0

2

4

h/h0

10 20 30 40
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

FUN3D - CFL3D
FUN3D - TAU

| cCd,p|

(b) Difference in Cdp

h/h0

10 20 30 40
0

2

4

h/h0

10 20 30 40
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

FUN3D - CFL3D
FUN3D - TAU

| cCd,v|

(c) Difference in Cdv

Figure 3. Code to code comparisons of lift and drag coefficients. Solid symbol
denotes |∆cC| and is associated with the left axis. Open symbol denotes the con-
vergence rate, σ, and is associated with the right axis.
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Table 1. Richardson extrapolation between two finest grids and the difference in the
Richardson extrapolation between codes.

Cl Cd Cdp Cdv
CFL3D 1.09090048 0.012269991 0.006064194 0.006205797

FUN3D 1.09102833 0.012272406 0.006066618 0.006205788

TAU 1.09104242 0.012272462 0.006066638 0.006205823

|CFL3D - FUN3D | 1.3 · 10−4 2.4 · 10−6 2.4 · 10−6 1 · 10−8

|CFL3D - TAU | 1.4 · 10−4 2.5 · 10−6 2.4 · 10−6 3 · 10−8

|FUN3D - TAU| 1.4 · 10−5 6 · 10−8 2 · 10−8 3 · 10−8

three CFD codes. Also shown are the differences in the Richardson extrapolations
between the codes, ∆cUr. The difference in Cdv ,r between any of the three codes
is an order of magnitude smaller than the difference in the quantities themselves
(∆h or ∆h). The same is true for the differences between FUN3D and TAU codes
for Cd,r and Cdp,r. The differences in Cd,r and Cdp,r between CFL3D and either
other code is similar to the difference in the property itself. For the Richardson
extrapolation of the lift coefficient, Cl,r, the difference between codes is similar to
or greater than the differences between Cl.

The Richardson extrapolation is most often thought of as an estimate of the
limiting value of a quantity as the mesh size goes to zero. However, the Richardson
extrapolation of a property can be computed between any two grids, and it provides
a (p+ 1)-order approximation to that property. In the asymptotic regime, an esti-
mate of the error in the Richardson extrapolation of a property, ∆hUr, should be
lower than the estimated error of the property itself, ∆hU or ∆rU , and it should
be converging at a higher rate (by one) than the property itself. This general rule
is demonstrated in Appendix Section A.2 for monotone and oscillatory high-order
models of the error. In practice, however, ∆hUr is a highly sensitive metric de-
pending on ∆2

h, and obtaining useful results is often difficult. Figures 4 and 5
present analogs to figures 2 and 3 in which some of the data has been replaced by
its Richardson extrapolation.

Figure 4 is the analog to figure 2 in which ∆hU has been replaced by ∆hUr
(U denotes any of the force coefficients). The error estimate for the Richardson
extrapolation of Cdp is lower than the error estimate of Cdp for all codes and for
all grids (Cd is similar). As is typically the case in practice, the error estimate
of the Richardson extrapolations is less smooth than that of the property itself,
making calculations of convergence rates unreliable. However, the estimated error
in the Richardson extrapolation of Cdp essentially parallels that of the property, and
therefore, the convergence rate is clearly not consistently higher than that computed
directly from Cdp . The estimated error of the Richardson extrapolation of the lift
coefficient is generally lower than ∆rCl for the CFL3D and TAU codes, while the
opposite is true of the FUN3D results. The convergence is not smooth, and valid
convergence rates cannot be computed. Results for Cdv are similar in character to
those of Cl. Although the estimated error of the Richardson extrapolation of each
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(c) Error estimates for Cdv .

Figure 4. Error estimates of the Richardson extrapolation, |∆hCr| of lift and drag
coefficients compared to a direct estimate of error, .

coefficient is generally lower than that of the property itself, a p + 1 convergence
rate is not observed in any case. Formally, this would suggest that none of the
results are within the asymptotic regime; however, it is more likely attributable to
the ill-conditioned nature of this error estimate.

Code-to-code comparisons between the Richardson extrapolation of each force
coefficient are presented in figure 5. This metric is smoother as it involves only a
single ∆h, and convergence rates can be reliably computed in most cases. Proper-
ties that previously exhibited an oscillatory convergence pattern in the metric ∆cU ,
converge monotonically in the ∆cUr metric, and vise versa. Generally, these results
reinforce conclusions drawn from figure 3. In particular, ∆c properties whose con-
vergence had stalled, such as ∆cCdp between FUN3D and CFL3D, are still stalled
and at similar levels. Properties whose convergence was slowing, such as ∆cCl,
have now stalled. Some properties that were previously converging steadily, such as
∆cCdp between FUN3D and Tau, are now showing signs of slowing convergence.

The notion of the Richardson extrapolation can be extended to higher order by
fitting a higher degree polynomial form of the error model through data from more
grids. Using a truncated and normalized form of equation 2 as a high-order error
model

ε(h) ≡ U(h)− Ue ≈
N−2∑
k=0

αk(h/h0)
p+k (4)

the parameters Ue and αk can be determined by fitting equation 4 to data from a
sequence of N grids. To denote that the results are obtained from a data fit to a
particular set of grids, Ue is replaced by UrN ,n in which N denotes the number of
grids included in the set, and n identifies the finest grid of the set. Thus, the fit is
defined by

Ui = UrN ,n +
N−2∑
k=0

αk(hi/hn)p+k (5)

for i in the interval [n, n + N − 1]. As in the earlier results using the standard
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Figure 5. Code to code comparisons of the Richardson extrapolations of lift and
drag coefficients. Solid symbol denotes |∆cC| and is associated with the left axis.
Open symbol denotes the convergence rate, σ, and is associated with the right axis.
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Richardson extrapolation, the design order of p = 2 is used in evaluating the data
fit. Some additional details concerning this approach are discussed in the Appendix
Section A.3. Note that Ur2,n is the standard Richardson extrapolation on grid-n.
Also, to unify the notation, let Ur1,n ≡ Ui. Figure 6 presents the convergence of
the higher-order extrapolated solution in which the order of the fit is increased
as the grid is refined. The plot shows the difference between the highest order
extrapolation supported by a given grid and all coarser grids, and the next lower
order extrapolation:

∆NUrN ,n ≡ UrN ,n − UrN−1,n. (6)

This difference provides an indication of the accuracy of the high-order extrapola-
tion. The high-order extrapolation converges faster than either the solution, or the
Richardson extrapolation of the solution, and its convergence is smoother than the
convergence of the Richardson extrapolation. The change in the high-order extrap-
olation on the finest grid is one to two orders lower than any error estimate of the
solution given by ∆h or ∆r. Recall that, as was shown in figure 4, it is difficult to
reliably estimate the error in the standard Richardson extrapolation.

Table 2 gives the high-order Richardson extrapolation, UrN ,0, predicted using the
highest-order extrapolation supported by the available grids (N = 7 for FUN3D and
TAU results, N = 6 for CFL3D). The differences between the high-order Richardson
extrapolations and the low-order Richardson extrapolations, shown in Table 1, are
one to two orders of magnitude smaller than the code-to-code comparisons, except
for those cases in which the code-to-code differences are less than 10−7. Therefore,
the code-to-code comparisons of the high-order Richardson extrapolations are sim-
ilar to those shown in Table 1 for the standard low-order Richardson extrapolation
in all cases (and are not shown here).

Another benefit of the high-order extrapolation is that it can provide a quan-
titative measure as to whether a set of grids has entered the asymptotic regime.
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Figure 6. Convergence of high-order extrapolations, |∆NCrN ,n|, of lift and drag
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Table 2. Limit value from high-order Richardson extrapolation using all grids.

Cl Cd Cdp Cdv
CFL3D 1.0908884694 0.01227017647 0.006064383873 0.006205792595

FUN3D 1.0910231651 0.01227241020 0.006066662283 0.006205747916

TAU 1.0910359177 0.01227247257 0.006066708703 0.006205763868

Equation 5 can be recast as

Uj = UrN ,n + α0(h/h0)
p

[
1 +

N−2∑
k=1

Sk(h/ĥk)
k

]
, (7)

in which Sk = sign(α0αk) and ĥk ≡ h0|α0/αk|(1/k). In this form, ĥk is the grid size
at which the magnitude of the k-th term is equal to that of the leading error term
(the 0-th term). The smallest value of ĥk can serve to mark the upper threshold of
the asymptotic regime.

Table 3 gives the minimum value of ĥk/h0 and identifies the term in which it oc-
curs, k. For the current data sets in which the grid size doubles with each refinement,
the grid ratios, hk/h0, are {1, 2, 4, 8, . . .} for {grid-0, grid-1, grid-2, grid-3, . . .}. The
threshold for Cdp is just below grid-3 for CFL3D and TAU codes (e.g., ĥk/h0 = 7.4
and 7.9 are just below h3/h0 = 8), and just below grid-4 for the FUN3D code. The
threshold for Cdv is lower for all three codes and is especially so for CFL3D and
FUN3D. The threshold for Cl is less than one for all three codes suggesting that
none of the grids are within the asymptotic regime for the lift coefficient. For Cl
and Cdp , the thresholds predicted by the high-order Richardson extrapolation are
lower than might be inferred from a visual inspection of figures 2(a) and (d). It is
interesting to note that the value of k associated with the smallest ĥk is not always
p+1 (as intuition might dictate), but that occasionally a higher order term indicates
the onset of the asymptotic regime.

Table 3. Threshold of asymptotic regime for each force coefficient, and the term in
which it occurred: ĥk/h0, k.

Cl Cd Cdp Cdv
CFL3D 0.9, 1 7.4, 1 7.4, 1 2.2, 2

FUN3D 0.5, 1 13.6, 2 14.1, 3 4.9, 1

TAU 0.07, 1 10.4, 2 7.9, 1 6.1, 1

15



s
-1 -0.5 0 0.5 1

10
-6

10
-5

10
-4

10
-3

10
-2

| hCp,1|
| hCp,2|
|

h
C

p,3
|

Lower Surface Upper Surface

| hCp|

grid-1   
grid-2
grid-3

Upper Surface Lower Surface

(a) |∆hCp| for CFL3D.

s
-1 -0.5 0 0.5 1

0

1

2

3

4

hCp,1)

h
C

p,2
)

Lower Surface Upper Surface

grid-1
grid-2

Upper Surface Lower Surface

(b) σ for CFL3D.

s
-1 -0.5 0 0.5 1

10
-6

10
-5

10
-4

10
-3

10
-2

| hCp,1|
| hCp,2|
|

h
C

p,3
|

Lower Surface Upper Surface

| hCp|

grid-1  
grid-2
grid-3

(c) |∆hCp| for FUN3D.
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Figure 7. Pointwise |∆hCp| on airfoil surface and associated convergence rates, σ.
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Figure 8. Pointwise |∆rCp| on airfoil surface and associated convergence rates, σ.
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exactly second order. Here the convergence rates are presented only to illustrate this
point. A major distinction between figures 7 and 8 is in the behavior of the coarsest
grids. Except for small isolated regions, ∆rCp for the CFL3D and TAU codes
are converging monotonically. Only the lower surface of FUN3D shows significant
regions of nonmonotone convergence. Another distinction between figures 7 and 8,
that is especially noticeable for the TAU results, is that the convergence rates on
grid-1 are closer to the design order.

The convergence rates for the second finest grid in figures 7 and 8 should agree
closely if the solutions are well within the asymptotic regime. However, because
∆hCp,1 ≡ ∆rCp,1 and ∆rCp,0 ≡ ∆rCp,1/4, differences in the convergence rate on
grid-1, σ(∆hCp,1) and σ(∆rCp,1), are in fact completely determined by the error
level on grid-2, ∆hCp,2 and ∆rCp,2.

Figures 9 and 10 present the convergence of Cfx using ∆h and ∆r respectively.
Because of missing data in the CFL3D data files, only results for FUN3D and TAU
are presented. The estimated errors of FUN3D are generally lower on the lower
surface than on the upper surface. The opposite is true for the TAU code. As
with Cp, the estimated error of Cfx has peaks near the leading and trailing edges.
These peaks are larger for the TAU code than for FUN3D. The distribution and
character of the estimated error on the upper surface is similar between the two
codes. However, the error of the TAU code on the lower surface is much more
evenly distributed. Convergence is generally monotone on both surfaces for both
codes, however, the error drop between finer grids is less than that observed on the
coarser grids in some regions. This is particularly evident on the lower surface of
data produced by the TAU code in figure 9. Comparing figures 9 and 10, the results
are very similar in character; however, many of the unusual attributes just described
are less pronounced when using the ∆r error measure. For example, in some regions,
the error drop between the finer grids is still less than that between the coarse grid
but not to the degree observed in figure 9. Accordingly, the convergence rates
computed from ∆r are closer to the design order, especially on the lower surface for
data produced by the TAU code.

Finally, figure 11 presents pointwise code-to-code comparisons of Cp on the air-
foil surface. The agreement between the codes is converging uniformly everywhere
except in the immediate vicinity of the leading and trailing edges. The differences
between FUN3D and TAU codes are about an order of magnitude lower than the
differences between the FUN3D and CFL3D codes. The large drop in the differences
between the FUN3D and TAU codes between the finest grids is somewhat mislead-
ing. A close examination of the differences reveals that the sign of the differences
have changed, indicating that the solutions have crossed and will begin to diverge.
This is confirmed by the differences in the Richardson extrapolations, which are sig-
nificantly larger than the differences on the finest grids (shown as a dashed line with
open circles). This is further confirmed by the high-order extrapolation through all
four grids for which the differences are higher still (shown by the dotted line with
open triangles). For the differences between FUN3D and CFL3D, both extrapola-
tions are the same (to within the noise in the data) and are slightly lower than the
differences between those two codes on the finest grids.
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(a) |∆hCfx | for FUN3D.
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(c) |∆hCfx | for TAU.
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Figure 9. Pointwise |∆hCfx | on airfoil surface and associated convergence rates, σ.
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(a) |∆rCfx | for FUN3D.
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s
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

|
r
 C

fx,0
|

| r Cfx,1|
| r Cfx,2|
|

r
 C

fx,3
|

| rCfx|

Lower Surface Upper Surface

grid-0
grid-1
grid-2
grid-3

(c) |∆rCfx | for TAU.
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Figure 10. Pointwise |∆rCfx | on airfoil surface and associated convergence rates, σ.
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Figure 11. Pointwise code to code comparison of Cp on airfoil surface.

4 Data Diagnostics

The convergence analysis of the pointwise data can provide insight into the dis-
cretization and uncover irregularities that are not apparent by examination of the
solution directly, but that may be reducing the accuracy and efficiency of the sim-
ulation. The plots of estimated error in figures 7 through 10 contain four types of
irregularities. The first type of irregularity examined is indicated by the piecewise
smooth downward spikes seen in the data for all codes at almost all grid levels. For
example, such spikes occur in figure 7(c) near s = −0.2, 0.4 and 0.9. These down-
ward spikes will occur in ∆hU whenever solutions on adjacent grids intersect, and
in ∆rU whenever the solution intersects the Richardson extrapolation. Such spikes
are common and normal, but they have consequences. The depth of the downward
spike has no physical or numerical significance, but is merely a function of how close
to a grid point the intersection occurs. However, the small values of estimated error
corrupt the convergence rate computation on two grid levels, causing the computed
order property to approach plus or minus infinity depending on whether the small
value appears in the numerator or denominator of equation 3. For global or inte-
grated quantities, such behavior is commonly associated with oscillatory convergence
and is often an indicator that the solution is not in the asymptotic regime. However,
this is not the case for pointwise error estimates as the solution intersections and
associated downward spikes often appear on every grid. The downward spikes may
shift during grid refinement by an amount that decreases with refinement. The shifts
can be associated with phase errors in the solution, but more commonly result from
different regions of the flow converging at different rates. An integrated quantity is
strongly influenced by the shifting of a downward spike, resulting in oscillatory con-
vergence of the integrated quantity even when the pointwise solution is converging
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monotonically in regions away from the spike. The convergence rate computation is
corrupted in a region in the neighborhood of the downward spike, and this region
is larger if the downward spike is shifting as the grid is refined. In the asymptotic
regime, the physical width of the corrupt region tends to remain a constant as the
mesh is refined.

The second type of irregularity is indicated by the upward spikes near the leading
and trailing edges. Both regions have complex physics and higher than average
gradients that may challenge the numerics. However, the grids are highly refined in
these region, and numerical experiments to assess the sensitivity of the trailing edge
resolution have been performed (ref. 2). Figure 12a presents ∆hCp near the leading
edge for data produced by the TAU code. The piecewise smooth downward spikes
near s = −0.03 and 0.005 are of the type described previously and are not a concern.
Figure 12b expands the scale further near s = 0.0, but also includes the stagnation
point, which is at approximately s = −0.00273. The estimated errors are smooth
near the stagnation point suggesting that this complex flow region causes no unusual
difficulties. At s = 0.0, however, the geometry, the solution, and all boundary
conditions are smooth and yet the error is not. Figure 13 presents ∆hCp near the
leading edge for all three codes where it is clear that the problem is not isolated
to the TAU code. Unlike the first type of irregularity, the region affected by the
oscillations is limited to a few grid points near s = 0, so the physical region affected
becomes smaller as the mesh is refined. The relative amplitude of the spike in the
error of the CFL3D and TAU codes decays slower than that of surrounding points
as the grid is refined. FUN3D has the smallest oscillations, and the irregularity at
s = 0 takes on the character of a jump in error as the grid is refined (rather than a
spike or oscillation).

Considering the smoothness of the geometry and the expected smoothness of the
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Figure 12. Pointwise convergence of |∆hCp| near leading edge for TAU code.
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Figure 13. Pointwise convergence of |∆hCp| near the leading edge.
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Figure 14. Grid spacing and the derivative of the grid spacing near leading edge.

flow at s = 0, a probable cause for the oscillations is a lack of smoothness in the grid.
When viewed directly, the grid near the leading edge appears essentially uniform
in the direction around the airfoil. However, a close examination of the derivatives
of the grid, shown in figure 14, indicates that the normalized grid spacing ds/dξ is
continuous but not differentiable at s = 0 (note: ξ = i/Imax). A similar jump in
the derivative of the mesh spacing d2s/dξ2 occurs at both the leading and trailing
edges of the airfoil. An examination of other aspects of the grid reveals that the
wall-normal stretching is slightly nonuniform near the leading and trailing edges;
however, its variation is slight and appears continuous. CFL3D is a structured grid
code that relies on a smooth curvilinear grid transformation, thus it is not surprising
that a nonsmooth grid might produce some error. It is generally thought that the
unstructured grid codes should be less sensitive to grid smoothness, as they are
designed for unstructured grids that are inherently nonsmooth. However, the errors
produced by the two unstructured grid codes are substantial, and they have quite
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Figure 15. Pointwise |∆hCp| near the trailing edge upper surface.

different characteristics from one another.
As noted above, the grid near the trailing edge also has discontinuous metrics.

Error spikes and oscillations near the trailing edge, shown in figure 15, are similar
in character to those at the leading edge. That is, the oscillations in the error are
limited to a few points near the trailing edge, and the amplitude of the oscillations
converges much more slowly than points just upstream of the trailing edge. While
the flow near a sharp trailing edge is known to have singular attributes (refs. 2,14),
the affected region scales with Reynolds number as Re−3/4 (refs. 15, 16). For the
current case with a Re=6 ·106, the singular behavior is expected to be contained
within a radius of ≈8 ·10−6, which is on the order of the streamwise mesh spacing
of the finest grid. Thus, the singular behavior is wholly unresolved by the sequence
of grids in this study, and the discontinuous grid metric may be contributing to the
trailing edge oscillations.

The third type of irregularity is indicated by the highly isolated spikes seen
in the CFL3D data in figures 7 and 8. These spikes occur at four positions on
both the upper and lower surfaces: s ' ±0.028, ±0.32, ±0.89 and ± 1.012. A
close examination of the data at s ' 0.32, shown in figure 16, reveals that the
nonsmoothness is limited to a single grid point on the two finest grids. The two
coarser grids are unaffected. At two of the stations, s ' ±0.028 and ±1.012, only the
finest grid is affected. In addition, Cfx data for these points are missing from the file
cfl3d cf sa nopv.dat. After some investigation (ref. 17), it has been determined
that the finer grid simulations using CFL3D employed that method’s multiple-block
capability, and that the four streamwise stations given above coincide with the block
boundaries. The discrepancies have been identified as being associated with post
processing of the CFL3D data to interpolate the data from the cell-centered locations
to the node locations.

Finally, the fourth irregularity is the noisy character of the CFL3D data men-
tioned earlier. A close examination of the data in a region where Cp is nearly
constant is shown in figure 17. On the finest grid, Cp has an unexpected piecewise
linear character. This occurs in spite of the fact that the data in the file contains
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Figure 16. Cp and |∆hCp| near error spike in CFL3D data.
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10 significant figures. Although smoother in appearances, the second finest grid
also exhibits a slight nonsmoothness; however, it is less noticeable because there
are no regions that are sufficiently constant. This abnormality is consistent with a
truncation in precision to ≈ 5 · 10−6, which corresponds to the precision of single
precision data. It is suspected that single precision operations were used at some
point during the post processing to interpolate data to the nodes.

None of the irregularities just discussed are readily apparent through a direct
examination of the solution. The pointwise convergence analysis has not only made
them apparent, but has also provided clues to their cause. The first type of irreg-
ularity, the downward spike caused by intersecting solutions, is common and is of
little concern. However, it is important to recognize that order property estimates
will be invalid in the neighborhood of this type of irregularity. The remaining three
types of irregularities (the oscillations near leading and trailing edges exhibited by
all three codes, the single point spikes at particular locations, and the low level
noise in the CFL3D data) were indicative of a potential problem with grid smooth-
ness, or with the extraction and post processing of the data. The second and third
type of irregularities were isolated to a finite number of grid points. The fourth
type of irregularity was global but its amplitude was about on order of magnitude
smaller than the measured errors on the finest grid. Consequently, it is not expected
that any of the irregularities has a significant impact on the flow solution, or that
correcting them would alter any conclusions drawn in prior publications.

5 Summary

Data from the “Turbulence Modeling Resource” website are analyzed to determine
the convergence behavior of three second-order CFD codes: CFL3D, FUN3D and
TAU. The case considered for this analysis is the simulation of turbulent flow over an
NACA–0012 airfoil using the Spalart-Allmaras turbulence model. The convergence
of both integrated properties and pointwise data are examined. Several different
methods for estimating errors and computing convergence rates are also compared.
The coefficient of drag exhibits second-order convergence for all three codes, and
convergence is monotone over a sequence of 7 grids. The convergence rates of other
properties are less well behaved. Although the viscous and pressure components
of drag are similar in magnitude (≈0.006), the error in the pressure component is
much larger and dominates the convergence properties. The errors in the viscous
component of drag predicted by CFL3D and FUN3D are one to two orders lower
than that due to pressure. The convergence rates of the viscous component on the
three finest grids ranges from ≈3.0 for CFL3D to ≈1.0 for FUN3D. The error of the
viscous component predicted by the TAU code is only a factor of two lower than
that of the pressure component, and the convergence rate is ≈1.6.

Two methods for estimating the error, ∆h and ∆r, give similar results within
the asymptotic regime. Neither method is particularly reliable for coarser grids,
and disagreement between them serves primarily to confirm that the CFD methods
are outside the asymptotic regime (for that particular data). The extent of the
asymptotic regime is not a fixed property of a code and the flow case, but also
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depends on the physical property under examination. While the total drag and
the contribution due to pressure appear to be within the asymptotic regime for all
grids, only the two or three finest grids appear to be within the asymptotic regime
for the lift and the viscous component of drag. However, as it takes more than
three grid levels to establish a trend, there is uncertainty whenever only the three
finest grids appear to be within the asymptotic regime. A high-order extension to
the Richardson extrapolation improves the accuracy of the mesh limit values, and
provides a quantitative estimate of the threshold of the asymptotic regime. This
approach indicates that the lift is not in the asymptotic regime on even the finest
grid for any of the three CFD codes. For the viscous component of drag, CFL3D
results are within the asymptotic regime on the two finest grids, whereas FUN3D
and TAU results are within asymptotic regime on the three finest grids.

The three codes are converging to similar but not identical solutions. The largest
differences between the codes are in the coefficient of lift for which the difference
between CFL3D and FUN3D is greater than 10−4. The best agreement occurs in
the viscous component of drag in which all three codes are converging toward each
other at second-order. The agreement between the two unstructured grid codes is
good with all properties except lift converging toward common values at a rate of
second-order.

Analysis of pointwise data on the four finest grids provides insight into the
error distribution. For all three codes, the error in Cp is generally lower and more
uniformly distributed on the lower surface of the airfoil than on the upper surface.
FUN3D has the lowest error in Cp on the lower surface, but exhibited the least
uniformity on the upper surface. The different error estimates give similar results
for the three finest grids, but are noticeably different on the coarsest of the four
grids indicating that the coarsest grid is outside of the asymptotic regime. All three
codes exhibit spikes in the error of Cp at the leading and trailing edge.

Examination of Cfx from the FUN3D and TAU codes indicates that the two error
estimates give similar results on all four grids. The Cfx of both codes exhibited spikes
at the leading and trailing edges, but otherwise, the two codes have very different
error distributions. For FUN3D, the estimated error on the upper surface is higher
and more uniform than on the lower surface, while the opposite is true for the TAU
results. Convergence rates are highly nonuniform, and rates on the finest grids are
further from the design order than those on the coarser grids.
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Appendix A

Computation of Error Estimates and Convergence
Rates

In the limit as the mesh size h goes to zero, the numerical error in the solution
of a CFD simulation is expected to behave as

ε(h) ≡ U(h)− Ue = αhp, (A1)

in which the design order of convergence p is a property of the CFD discretization,
and the coefficient α depends on both the solution and the discretization. If the
exact solution is known, α and p can be determined by fitting the error model,
equation A1, to data from any two grids:

ε(hi) ≡ U(hi)− Ue = αhσi , for i = 1, 2, (A2)

in which p is replaced by σ to reflect that it is the result of a curve fit and not
necessarily the order property of the CFD method. Dividing one equation into the
other gives

ε(h2)

ε(h1)
≡ U(h2)− Ue
U(h1)− Ue

=

(
h2
h1

)σ
, (A3)

and solving for σ gives

σ = log

(
U(h2)− Ue
U(h1)− Ue

)
/ log

(
h2
h1

)
. (A4)

The coefficient α can be determined from equation A2 using data from either grid-1
or grid-2.

If the exact solution is not known, as is usually the case, a surrogate for the
exact solution can be used in its place. Two common surrogates are the Richardson
extrapolation, discussed in Appendix Section A.2, and the numerical solution on a
much finer grid. The surrogate solution must be considerably more accurate than
the solutions on either grid-1 or grid-2. Reference 18 discusses the inaccuracies that
will occur if equation A4 is applied to a sequence of grids in which the surrogate is
the solution on the finest grid of that sequence.

If neither the exact solution nor a suitable surrogate solution is available, the
error model can be evaluated by fitting the error model through three grids. Fitting
equation A2 to data from three grids, i = 0, 1 and 2, and taking the ratio of the
difference between pairs of equations gives

ε(h2)− ε(h1)
ε(h1)− ε(h0)

≡ U(h2)− U(h1)

U(h1)− U(h0)
=

(
h1
h0

)σ ((h2/h1)
σ − 1

(h1/h0)σ − 1

)
. (A5)

If h2/h1 = h1/h0, the above equation reduces to

U(h2)− U(h1)

U(h1)− U(h0)
=

(
h1
h0

)σ
, (A6)
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and σ is given by

σ = log

(
U(h2)− U(h1)

U(h1)− U(h0)

)
/ log

(
h1
h0

)
. (A7)

If h2/h1 6= h1/h0, equation A5 can be solved iteratively for σ using a Newton
iteration. Alternately, equation A5 can be recast into a form suitable for a simple
fixed point iteration as follows:

σn+1 = log
(
U(h2)−U(h1)
U(h1)−U(h0)

)
/ log

(
h1
h0

)
− P (σn)

P (σ) = log
(
(h2/h1)σ−1
(h1/h0)σ−1

)
/ log

(
h1
h0

)
starting with P (σ0) ≡ 0.

(A8)

With σ known, α can be determined from the difference between equation A2 on any
two grids, and a fit of Ue can be determined from the ratio of equation A2 on any
two grids. It is worth noting, and shown in Appendix Section A.2, that computing
Ue in this way is equivalent to evaluating the Richardson extrapolation using the
convergence rate given by the three-grid fit.

The similarity between equations A4 and A7 is not a coincidence. In the asymp-
totic regime in which σ ≈ p, the difference between the solutions on two grids can
be rewritten as follows:

U(h2)− U(h1) = αhp2(1− (h1/h2)
p)

= ε(h2)(1− (h1/h2)
p)

= ε(h2)S(p, h2/h1)
−1

(A9)

in which S(p, h2/h1) defines the scaling function used in this work. Thus, for a
uniform grid refinement within the asymptotic regime

ε(h2)− ε(h1)
ε(h1)− ε(h0)

≈ ε(h2)

ε(h1)
≈ ε(h1)

ε(h0)
. (A10)

The above formulas, equations A1 – A9, are valid for any two or three grids
within the asymptotic regime and with any grid ordering. Without loss of generality,
the body of this work and the remaining Appendix Sections adopt the convention
that h0 < h1 < ... < hn < hn+1. Equations A3 and A5 will be referred to as the 2-
grid and 3-grid formulas, respectively. It is worth noting that the simple error model,
equation A1, is a monotone equation, and any attempt to fit it to a nonmonotone
data set is problematic. This issue is discussed further in the next Appendix Section.
However, equations A3 and A5 and formulas derived from them are made valid,
although not accurate, by replacing the left-hand side of each equation with its
absolute value. Further, as a practical matter, the numerator and denominator of
the left-hand sides must be bounded away from zero to avoid log(0) and division by
zero.

The above formulas are precise only in the limit as the grid size goes to zero. For
any two or three particular grids, the formulas represent curve fits that only approx-
imate the asymptotic character of the data. In recognition of this fact, this work
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denotes estimates of the error with the ∆ symbol and defines particular estimates
as ∆r,i = (U(hi) − Ur) and ∆h,i = S(p,Ri)(U(hi) − U(hi−1)) in which subscript
(.)r denotes the Richardson extrapolation, and Ri denotes the ratio of grid sizes
(hi/hi−1).

A.1 Oscillatory Convergence

As pointed out above, the error model is a monotone function; however, data ex-
hibiting an oscillatory convergence pattern is not unusual. Figure A1 illustrates two
instances of oscillatory convergence produced by the FUN3D code. A pattern of
oscillatory convergence is not necessarily a bad characteristic for a CFD method to
possess, as the error of a method that converges in an oscillatory pattern is often
lower than that of a monotonically converging method. The effect of the oscillatory
data on the convergence rate computation depends on the character of the oscilla-
tion and on the formula used (2-grid or 3-grid formula). Although the FUN3D lift
coefficient is oscillatory, the two-grid formula can be applied without modification
because all the data lies below the Richardson extrapolation of the FUN3D data.
However, the error estimate of the three-grid formula, ∆h, will change sign at each
extrema. For Cdv , shown in figure A1b, the oscillatory data will induce a single sign
change into both ∆h and ∆r error estimates but at different locations.

Reference 13 provides a modification to the convergence rate computation that
treats the oscillatory case, but it has a number of unsatisfying characteristics. The
modification applies to the three-grid formulation and is based on switching the
sign of the error model for one of the three equations. In particular, the equations

h/h
0

5 10 15 20

1.0906

1.0908

1.0910

CFL3D

TAU

FUN3D

Richardson Extrapolation

(a) Cl

h/h
0

2 4 6 8
0.006204

0.006206

0.006208

0.006210

0.006212

CFL3D

TAU

FUN3D

Richardson Extrapolation

(b) Cdv

Figure A1. Examples of oscillatory convergence. Dashed line is the Richardson
extrapolation of the FUN3D data.
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associated with the three grids are written as

ε(h2) ≡ U(h2)− Ue = αhσ2

ε(h1) ≡ U(h1)− Ue = sαhσ1

ε(h0) ≡ U(h0)− Ue = αhσ0

(A11)

in which s = −1 if the data on the three grids is oscillatory, otherwise s = 1 resulting
in the usual three-grid formulation. This modification is equivalent to assuming that
the exact solution lies within the local bounds of the oscillation, and that the basic
error model is replaced with its absolute value:

ε(h) ≡ |U(h)− Ue| = αhσ

and thus, U(h)− Ue = ±αhσ.
(A12)

Carrying through the algebra from equation A11 gives:

ε(h2)−ε(h1)
ε(h1)−ε(h0) ≡

U(h2)−U(h1)
U(h1)−U(h0)

=
(
h1
h0

)σ ( (h2/h1)σ−s
s(h1/h0)σ−1

)
U(h2)−U(h1)
U(h1)−U(h0)

=
(
h1
h0

)σ ( (h2/h1)σ−s
(h1/h0)σ−s−1

)
1
s

s
(
U(h2)−U(h1)
U(h1)−U(h0)

)
=
(
h1
h0

)σ ( (h2/h1)σ−s
(h1/h0)σ−s

)
∣∣∣U(h2)−U(h1)
U(h1)−U(h0)

∣∣∣ =
(
h1
h0

)σ ( (h2/h1)σ−s
(h1/h0)σ−s

)
(A13)

(Note: s = ±1 therefore s−1 = s).
The modification provides a justification for taking the absolute value of the

ratio of the error estimates. However, it also introduces additional complexity asso-
ciated with determining the sign of s that, as will be shown, does not improve the
accuracy or validity of the computed convergence rate. Further if h2/h1 = h1/h0,
the additional complexity falls out of the equation and the result is only that of
taking the absolute value of the ratios of the error estimates.

Figure A2 illustrates the convergence rates of an analytic error function com-
puted by applying the full correction described in reference 13, and shown above
in equation A13, with that of only taking the absolute value of the ratio of error
estimates. The analytic error function is constructed from an approximate fit to the
FUN3D Cl data shown in figure A1a and is given by:

Cl = 1.091023 + 2 · 10−5(h/h0)2
[
1− h/h0)

5
+

(
h/h0)

10

)2

+

(
h/h0)

40

)3
]
. (A14)

The analytic error function allows the convergence rates to be computed for any
value of h/h0 using any grid refinement ratios desired. The results shown in figure A2
are computed assuming the grid spacing is increasing in a geometric manner as the
grid is coarsened: hn+1/hn = 1.2hn/hn−1 with hn/hn−1 = 2. The predictions using
the two formulas for nonuniform refinement are identical whenever all three points
are in a monotone region. Both formulations give similarly inaccurate results within
the oscillatory region. Figure A2 contains two additional curves that provide some
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Figure A2. Error function constructed from FUN3D Cl data, and convergence
rates for nonuniform refinement resulting from formulation of reference 13, from a
simplified form that just takes the absolute values of arguments, and from uniform
refinement and analytic formulations.

context. The dashed line is the convergence rate computed for a uniform refinement
with hn+1/hn = hn/hn−1 = 2, and the solid line is an analytic convergence rate
derived as follows.

Given ε(h) ≡ U(h)− Ue = αhσ

∂U(h)
∂h = σαhσ−1

= σ(U(h)− Ue)/h

therefore σ = h∂U(h)
∂h /(U(h)− Ue),

(A15)

in which Ue may be replaced with a surrogate value. All four formulations predict
similarly large and small (negative) values of the computed convergence rate within
the oscillatory region, although the spikes in the discrete forms would go to ±∞
if the computations were not bounded in some manner. All four formulations are
simply indicating that a simple error model of the form αhσ cannot be fit to a
nonmonotone function with any degree of accuracy. The recommendation is to not
try to fix the formulas, but to acknowledge that the formulas are indicating that the
data are not exhibiting an asymptotic behavior in the oscillatory region, and that
the computed convergence rate is invalid.

A.2 Richardson Extrapolation

The Richardson extrapolation (refs. 8,11) was developed as a means of estimating the
asymptotic solution in the limit of the mesh size going to zero. It was arrived at by
fitting the simple error model, A1, to data from two grids subject to the assumption
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that the convergence rate is known. Replacing Ue with Ur in equation A1, to indicate
that it is the result of a particular curve fit, and solving for Ur gives

U(h2)− Ur(h1) = (U(h1)− Ur(h1))Rp

Ur(h1)(R
p − 1) = U(h1)R

p − U(h2)

Ur(h1) = (U(h1)R
p − U(h2))/(R

p − 1) (A16)

in which R = h2/h1. The method was only vaguely described in reference 8,
however, the approach was applied to estimate the error of a string vibration
problem and a two-dimensional plate vibration problem. The work also demon-
strated that the Richardson extrapolation converged faster than the discrete solu-
tion. In reference 11, Richardson presented equation A16 and named the formula
the “h2-extrapolation” (when applied to a second-order discretization). Reference 11
also mentioned the possibility of extending the process to higher order obtaining a
“h4-extrapolation” using only three grids (when using central difference operators)
but did not develop it further.

In references 8 and 11, the power p was always taken as the leading term of the
discretization error. It is clear that using the convergence rate determined from a
three-grid fit and evaluating equation A16 using any two of the three grids would
result in the limiting value of the curve passing through the data from those three
grids. While this provides a convenient formula for estimating Ue associated with the
three-grid fit, which will be denoted as Uf , this value should be considered distinct
from that of the Richardson extrapolation. The Richardson extrapolation should
be viewed as an asymptotic expansion about the (unknown) exact solution, and
as such, the expansion should use the theoretical order property of the discretiza-
tion method. In the asymptotic regime, the two values should converge toward a
common value in a similar manner. However, outside of the asymptotic regime, and
particularly in an oscillatory region, the convergence rate predicted by the three-grid
fit can vary widely with no relation to the asymptotic value, and an extrapolation
or error estimation based on this computed σ will also vary widely and be suspect.
Figures A3(a) and (b) present the convergence of Ur and Uf , and error estimates
based on the surrogates Ur and Uf , respectively. The results are computed using
the analytic model of the error given by equation A14. In the limit as the mesh
size goes to zero, both Ur and Uf converge to the exact solution at a higher rate
than that of the solution. It is now well known that the Richardson extrapolation
is a (p+1)-order approximation to Ue, and this is readily shown simply by includ-
ing higher-order truncation terms in the derivation. Near the upper limits of the
asymptotic regime, the error in Ur is smooth while the error in Uf is much larger
and erratic.

In figure A3(a), error estimates using either Ur or Uf as a surrogate converge
to the exact error in the limit of the grid size going to zero; so either would be an
accurate surrogate for Ue if the finest grid is sufficiently fine. Figure A3(b) presents
the error estimate that would be obtained on the finest grid if h was the mesh size
of the finest grid of a sequence (i.e., the figure depicts U(h)−Ux(h) for x = f or r,
not U(h)−Ux(h0) for some small h0). An estimate based on Ur would underpredict
the error near the upper limits of the asymptotic regime, but the error estimates
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Figure A3. Convergence of surrogate solutions as approximations of the exact so-
lution, and of error estimates based on surrogates solutions for an error model
constructed from FUN3D Cl data.

would be smooth. In contrast, error estimates based on Uf may either over- or
underpredict the error by orders of magnitude depending on small changes in the
size of the finest grid. This illustrates a risk associated with using any surrogate
solution when it is not known if the finest grid is in the asymptotic regime, and
that the risk is highest when Uf is used as a surrogate solution. Note that similar
behavior could be expected for any method or property exhibiting nonmonotone
convergence. It is recommended that an extrapolated surrogate solution be used
only if it has been established that the data it is based on is within the asymptotic
regime. Also, the Richardson extrapolation based on a known (or presumed) design
order is preferred over an extrapolation based on a computed order (i.e., that from
a three grid extrapolation).

A.3 High-order Extension to Richardson’s Extrapolation

The Richardson extrapolation can be extended to higher order by fitting a high
degree polynomial form of the error model through data from a larger sequence of
grids. Such a fit is defined by solving set of the equations given by

Ui = UrN ,n +
N−2∑
j=0

αj(hi/hn)p+j for grids in the set n ≤ i < n+N (A17)

in which p is the design order, and UrN ,n denotes the value in the limit of h going
to zero. The procedure applies equally well to a uniform or a nonuniform grid
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refinement sequence, and it also applies to monotone or oscillatory convergence
data. The equation set can be represented in matrix form U = AR in which
R ≡ [UrN ,n, α0, α1, . . . , αN−2], U ≡ [Un, Un+1, . . . , Un+N−1], and the N by N matrix
A is given by

ai,j =

{
1 for j = 1

(hn+i−1/hn)p+j−2 for j > 1
(A18)

The condition number of the matrix A grows rapidly with the degree of the fit.
For a uniform grid refinement with a refinement ratio of R, the condition number
is O(R(n−1)(n+p−2)). However, the ill-conditioning of A can be eliminated by a
diagonal scaling of the form Â ≡ DAD in which di,i = 1/

√
ai,i. The condition

number of Â is O(103) for a uniform refinement with N = 14.
The convergence of UrN ,n was presented in figure 6, in which the error was

estimated as the difference between fits of different order as the grid was refined.
Generally the convergence rate of UrN ,n is higher order than the solution itself.
In contrast, it was difficult to even assess the error in the standard Richardson
extrapolation.

The formula for the high-order Richardson extrapolation can be recast, as was
shown in equation 7, to provide an estimate for the upper threshold of the asymptotic
regime. Table 3 presented the threshold for the four force coefficients for each of
the three CFD codes. Table A1 presents FUN3D data that examines in detail how
the threshold converges as the order of the extrapolation increases. The table gives
Skĥk/h0 for curve fits of increasing order that include the finest grid. Except for
the k = 1 terms of Cdp , all terms are converging as the degree of the fit is increased.
The smaller values that determine the threshold of the asymptotic regime converge
well.
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Cl
k N=3 N=4 N=5 N=6 N=7

1 14.8 0.732 -0.224 -0.465 -0.553
2 -2.34 1.12 1.52 1.61
3 -3.11 -3.35 -3.32
4 6.79 6.10
5 -11.1

Cd
k N=3 N=4 N=5 N=6 N=7

1 81.4 201 -314 -115 -84.3
2 29.93 18.3 14.9 13.6
3 -19.7 -15.2 -13.6
4 21.0 17.5
5 -25.7

Cdp
k N=3 N=4 N=5 N=6 N=7

1 32.7 35.4 46.8 61.9 76.5
2 53.99 23.0 17.5 15.6
3 -21.1 -15.9 -14.1
4 21.5 17.8
5 -26.0

Cdv
k N=3 N=4 N=5 N=6 N=7

1 -6.93 -5.54 -5.11 -4.94 -4.86
2 11.72 9.25 8.44 8.09
3 -14.7 -12.0 -11.1
4 18.5 15.7
5 -24.1

Table A1. Convergence of Skĥk/h0 for FUN3D as degree of fit N is increased.
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