FLOWS WITH IMPOSED PERIODIC FORCING

1 Mathematical Background

The flow field is induced by an oscillatory jet of air emanating from a solid boundary.
This oscillatory motion introduces a wave pattern that can be used as a timer for
selective sampling of the flow field fluctuations. Thus, the weak organized wave
motion can be extracted from a background field of finite turbulent fluctuations. The
mathematical framework outlined here follows closely that originally presented by
Hussain and Reynolds (1970, 1972). Some previous work in this area that may also
be of interest are reported in Gatski and Liu (1980) and Obi, Ishibashi and Masuda
(1997).

If such traveling waves exist within the fluctuating flow field, any fluctuating
quantity f(x,t) can be decomposed into

fxt) = Fx)+ f(x1)+ f(x1)), (1)

where f(x) is the (time) mean value, f(x,t) is the statistical contribution of the
organized motion, and f7(x,t) the turbulence. Since the flow is not stationary, the
ergodic hypothesis does not hold and the ensemble mean does not equal the long time
average. Thus, a time average is defined as

F(x) = lim % F(x, t)dt (2)

(f(x,1)) = lim —fot—l—nT (3)

where 7 is the period of the imposed oscillatory motion. The phase average is the
average at any point in space of the values of f that are realized at a particular phase
¢ 1n the cycle of the oscillating jet. The wave component is then given by

J (th) = <f (X7t>> - f(X) ) (4>

so that
Jxt) = ([ (x8) + [ (x, 1), (5)
These results show that at any point in the flow a time varying function f(x,?) can
be partitioned into the three components parts defined in Eqs. (2), (3), and (4) given a
reference oscillating signal at a given frequency (period). The following properties are
associated with the triple-decomposition and prove useful in extracting information

about both the mean field(s) and the statistical correlations of the fluctuation field.
These relations include

fo=1fg, (Jo)y="Tlo. (Jo)=Tle), N={)=1.
F=0. =0, (f)=0, Jg=(f¢)=

(6)



These relations show that the fluctuation f’ is centered about both the time average
and phase averaged means and that the background turbulence is uncorrelated with
the organized motion.

2 Phase-Averaged Navier-Stokes Equations

In general, both pressure-velocity and density-velocity numerical solvers are used in
RANS CFD codes. In this section, the phase-averaged formulations for both the in-
compressible and compressible forms of the Navier-Stokes equations will be presented.
For contributors using time-accurate RANS-type formulations, the dependent vari-
ables calculated are the phase-averaged variables defined above and shown below to
satisfy transport equations that are formaly equivalent to the usual RANS equations.

2.1 Incompressible Phase-Averaged Equations

With the decomposition and mathematical framework outlined in Section 1, it is
possible to develop a set of phase-averaged Navier-Stokes equations that describe the
behavior of the phase-averaged mean quantities as well as the corresponding equations
for the phase-averaged turbulent quantities (Gatski and Liu, 1980).

In Section 2.1.1, the phase-averaged mean equations are presented and in Section
2.1.2 the phase-averaged turbulent quantities are presented.

2.1.1 Phase-averaged mean equations

The mean flow equations are given by
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From these results, it is possible to obtain the time-independent mean values, for
example

!
2

oy = (ot ®)

ﬂi = <u2>, U

2.1.2 Phase-averaged turbulent equations

As an example, the phase-averaged formulation for a two-equation (K')-(¢) model
will be given. Other models under consideration can be formulated in terms of phase-
averaged variables in a similar fashion.

The transport equations for the phase-averaged turbulent kinetic energy (K') (=
(ulul) /2) and dissipation rate (¢) are given by
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where o, 0., C.1, and C,y are closure coefficients, and an eddy viscosity relationship

is assumed for the individual phase-averaged stress components so that

(ud)) = §<K> — <aa<z;> + agzj>> , (11a)

with
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and C, a closure coeflicient.

2.2 Compressible Phase-Averaged Equations

In a compressible formulation, where Favre averaged variables are used, that is pu;/p,
the definition of the phase average has to be altered. In this case the compressible
phase-averaged variables are defined as

v (pus)

and the flow variables are partitioned as in Eq. (5). In Section 2.2.1, the phase-
averaged mean equations are presented and in Section 2.2.2 the phase-averaged tur-
bulent quantities are presented.

2.2.1 Phase-averaged mean equations

In terms of phase-averaged Favre variables, the mass conservation equation can be
written as

D{p) _ 9{p) VO 9 (u;)
D = g T {wi) oz, (p) Dz, (13a)
and the conservation of momentum as
P (w) __9{p)  Oow) _9lp) {wiu}) (13h)
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where
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A phase-averaged conservation of total energy equation can be written as
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where the total energy and total enthalpy, (p) (F) and (p) (H), respectively, are
) (s i
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From these results, it is possible to obtain the time-independent mean values, for
example

and

p=Ap), wi=(uw), E=(E), ¢=/(q) uu;=/uuj) (17)

2.2.2 Phase-averaged turbulent equations

Once again, a phase-averaged formulation for a two-equation (K)-(¢) model is used.
Other models can be formulated in terms of phase-averaged Favre variables in a
similar fashion.

The transport equations for the phase-averaged turbulent kinetic energy (K') (=
(ulul) /2) and dissipation rate (¢) are given by
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where o, 0., C.1, and C,y are closure coefficients, and an eddy viscosity relationship

is assumed for the individual phase-averaged stress components so that

() () = 2400 1) 85— e (St 4 20 (202)

with
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and C, a closure coefficient.
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