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Outline

• Introduction

• Perspectives on 3 workshop cases

– Synthetic Jet into Quiescent Air

– Synthetic Jet in a Crossflow

– Flow over a Hump Model

• For each, summary given and remaining 
challenges identified
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Introduction
• Synthetic jets have many practical applications

– Jet vectoring, separation control, enhanced mixing, skin friction 
reduction, virtual aeroshaping

• How accurate is CFD for predicting these types of 
unsteady flows?

• CFDVAL2004 workshop was held in March 2004 and 
addressed this question
– (http://cfdval2004.larc.nasa.gov)
– Special issue of AIAA Journal (Vol 44, No 2, 2006) had summary 

paper and 6 CFD papers
– Many other papers have appeared as well (both AIAA 

conference papers as well as in journals)

• Purpose of this paper: Summarize progress and answer 
the questions
– Has CFD gotten better at computing these types of flows?
– Are more advanced methodologies being applied?
– What challenges remain?
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Introduction, cont’d
• CFDVAL2004 workshop

– Case 1: Synthetic jet into quiescent air
– Case 2: Synthetic jet in a crossflow
– Case 3: Flow over a Hump model

• Three conditions: no-flow-control, steady suction, oscillatory control

• In ERCOFTAC database (Classic Collection), Case C.83

• Overall summary from AIAA Journal, Vol 44 No 2, 2006
– CFD only able to qualitatively predict synthetic jet flow physics
– In part due to uncertainty in how to model the BCs
– Need identified: building-block experiments to focus on obtaining 

extremely detailed data at and near slot/orifice exits

• A plug for workshops of this type:
– Many people computing same problems
– Improves synergy between CFDers and experimentalists
– Easier to discern trends & deficiencies
– “Outliers” easier to recognize
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Turbulent shear stresses
from CFDVAL2004 workshop, Case 3, separated region, SA model
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Description of methodologies

• Reduced-order or low-order

– Simplifications to RANS/URANS

– E.g., lumped element models, quasi-one-D models, 

proper orthogonal decomposition (POD) models

– Less expensive than RANS/URANS

– Useful to find viable design from among hundreds of 

possibilities
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Description of methodologies

• RANS/URANS

– Both solve Reynolds-averaged equations (RANS is 

steady-state, URANS is time-accurate)

f f f ′= +

- Then equations written in terms of        (long-time-average 
or phase-average)

- End up with unclosed term(s), turbulent stress:

- Modeled with turbulence model (e.g., 1-eqn, 2-eqn, EASM, 
RSM): models the MEAN EFFECTS of turbulent fluctuations

- RANS/URANS assumed to be valid if time scale of turbulent 
fluctuations << physical time step << important global 
unsteady time scales in the flow

f

ij
τ

(incompressible)
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Description of methodologies

• LES & blended RANS/LES

– Derived by applying low-pass filter to N-S eqns

– Idea is to resolve larger turbulent eddies, model 

smaller ones

– Resulting filtered eqns are functionally identical to 
RANS equations: again unclosed terms        must be 

modeled

– LES subgrid-scale (SGS) models are different from 

RANS turbulence models in that they include filter 
(typically dependent on local grid size)

– Blended RANS/LES works by blending the SGS 
model and turbulence model

• Sometimes problems in blending region (e.g., if in log-layer)

ij
τ

∆

),(
,, LESijRANSijij f τττ =
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Description of methodologies

• LES & blended RANS/LES, cont’d

– LES is difficult to analyze - easily complicated by 

numerics

– Excessive numerical dissipation affects ability to 

resolve features

– Numerical dissipation can behave like SGS model

– This fact taken advantage of in implicit LES (ILES)

• No SGS model used

• Inherent numerical dissipation provides filtering needed at 
smallest scales

• Theoretically justified in MILES (specific numerical methods 
employed)
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Description of methodologies
• DNS

– Direct simulation of N-S equations

– By implication & standard definition: requires that all spatial and 
temporal scales are resolved down to Kolmogorov scales

• Impossible at high Re on today’s computers

– More common: “coarse-grid” DNS - finest scales not resolved

– What is the difference between ILES and “coarse-grid” DNS?

• Equations identical

• No SGS model - numerical dissipation “models” the effects of 

smallest eddies & prevents artificial build-up of energy at smallest 

scales

• Numerics can be similar

3 1/ 4
( / )η ν ε= 1/ 2

( / )τ ν ε=
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Representation of different methods in Fourier space
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Case 1:
Synthetic jet into quiescent air
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Time-averaged centerline velocity

from original CFDVAL2004 workshop

(PIV = Particle Image Velocimetry)
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Analysis

• Workshop CFD results “all over the map”

– Turb models and slot BCs had big impact

• Experiment PIV & hotwire different near 
slot in original experiment

– New experiment (post-workshop) - at slightly 

different conditions

– New experiment PIV & Laser Doppler 

Velocimetry (LDV) agreed well

– Hotwire not accurate near slot
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Velocity measured near slot exit

Original data Newer data
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New experiment

- Slot end effects:

-intrude toward center, cause axis-switching phenomenon 

(vortex structures deform & orient long axis perpendicular to initial 

orientation)

-“2-D” approximation likely poor above 8h or so
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Published results for case 1
• Yamaleev & Carpenter - low-order (1-D Euler) method 

for internal cavity coupled to laminar flow N-S in field

• Vatsa & Turkel - URANS with FFT curve fitting of internal 
slot BC to match flow at exit

• Zhang & Wang - URANS with similar FFT internal BC

• Park et al - URANS with internal BC curve fit to data

• Carpy & Manceau - URANS with no cavity; exp data at 

exit used for BC

• Xia & Qin - DES with predictive moving wall internal BC

• Cui & Agarwal - DES & SST-LES; simple sinusoidal 
internal BC to try to match PIV & hotwire

• Kotapati et al - N-S; simple sinusoidal internal BC to try 
to match PIV
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Subsequent CFD improvements
example from Vatsa & Turkel

- Key: better matching experimental conditions at exit (FFT used to 

help match temporal variations)
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Subsequent CFD improvements
example from Carpy & Manceau

- Used PIV experimental conditions at exit

- RSM much better than k-epsilon model

- time lag between strain & anisotropy tensors (yielding negative

production) cannot be captured by E.V. models
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Subsequent CFD improvements
Xia & Qin

- Drum-like motion simulated with moving grid on 2-D section shape 

(predictive)

- 3-D DES computations with periodic BCs

0
( ) cos ( )x AF t y y

l

π 
= −  
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Subsequent CFD improvements
example from Kotapati et al

- Full simulation of turbulent structures in near-field (periodic BCs)
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Summary - case 1

• What’s new

– Recognition of importance of end effects

– Development/recognition of techniques to 

better match BCs at exit

– Internal cavity shape itself not a major factor

• But you need exp data at exit to match

• Predictive modeling of membrane motion used 2-D 
version of actual cavity shape

– DES and N-S simulations (as well as URANS) 

have been successful in the near-field
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Summary - case 1

• Remaining challenges

– Unclear whether URANS is adequate & which 

models are best

• SA & SST appear reasonable, but Carpy & 

Manceau suggest linear models miss key physics

• When is simulation (e.g., DES, N-S) necessary?

– Capturing 3-D end effects (and physics further 

into the field) possible?

– How well will a predictive moving-grid BC for 

3-D diaphragm shape work?
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Case 2:
Synthetic jet in a crossflow
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Published results for case 2
• Iaccarino et al - URANS (v2f and k-eps models) without 

& with plenum 

• Biedron et al - URANS (SA model) with plenum

• Rumsey et al - URANS (SA, SST, EASM models) with 

plenum

• Cui & Agarwal - DES and URANS (SST model) with 

plenum

• Xia & Qin - DES with moving-wall BC in plenum

• Dandois et al - LES (mixed scale model) and URANS 

(SST model) with plenum
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Sample CFD results over orifice
using simple periodic BCs in plenum (Rumsey)

Dip likely caused by large

cross-flow component in exp,

not modeled in CFD
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Unexplained asymmetry in exp
above center of orifice
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Sample CFD results
u-velocity 1D downstream (Dandois et al)
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Sample CFD results
turbulent normal and shear stresses 1D downstream (Dandois et al)
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Summary - case 2

• What’s new
– LES (with appropriate upstream inflow BCs) better 

than URANS at predicting turbulent quantities

• Earlier: recognition at CFDVAL2004 workshop that URANS & 
LES could both predict mean flow quantities reasonably well

– Including orifice important for capturing complex 

flowfield in its immediate vicinity

• Simple top-hat wall BCs miss physics 

– Dandois demonstrated potential effects of large 
periodic cross-flow velocity component in experiment

– Xia & Qin used moving wall BC in plenum

• Results appeared to be similar to usual simple periodic 
transpiration BC 
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Summary - case 2

• Remaining challenges

– Can a predictive (moving wall) BC in plenum 

be used to achieve closer agreement with 

velocities at orifice exit?

– In light of unexplained large v-velocity 

component in workshop experiment, revisit 

experiment or establish new benchmark 

dataset
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Case 3:
Flow over a hump model

- Based on earlier experiment by Seifert & Pack (AIAA J, Vol. 40, No. 7, 

2002, pp. 1363-1372)

- This case also used in subsequent 11th & 12th ERCOFTAC/IAHR 

Workshops on Refined Turbulence Modelling



Hump model – 3 conditions
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Hump configuration

-Blockage effects due to endplates must be accounted for in CFD

(affects surface Cp)



35

Results from workshop
reattachment location
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Phase-averaged Cp
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Long-time-average Cp
oscillatory case
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RANS/URANS problem identified

• Eddy viscosity underpredicted in 
separated shear layer region

– Too little mixing

– Too late a reattachment downstream

– Occurs for baseline, steady suction, or 

oscillatory control

– Similar problem seen in a separate 2-D hill 

workshop case

• Hump case has been computed by no less 
than 16 different groups
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Movie (turbulent shear stress)
example RANS (SA compared with experiment)
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Long-time-average streamlines
example RANS
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Numerical experiment
effect of arbitrarily doubling eddy viscosity in separated region, SA
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RANS/URANS results for case 3
• Iaccarino et al

• Capizzano et al - used Neumann surface BCs

• Cui & Agarwal 

• Balakumar - employed higher order WENO

• Morgan et al - employed higher order compact scheme

• Bettini & Cravero - commercial package

• He et al - commercial package; looked at plasma control

– k-epsilon attached earlier

– but because it separated later, not due to better physics!

• Madugundi et al - commercial package

• Rumsey et al - included parametric studies at other 

conditions from the experiment
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Blended RANS-LES, LES, & DNS
• Israel et al - EASM combined with FSM

• Hiller & Seitz - SAS model

• Krishnan et al - DES

– Also RANS with many variants, including 3-D with endplates

– Helped discover blockage issues

• Biswas - LES (dynamic model with KE eqn)

• Saric et al - LES (Smagorinsky - const Cs), DES, and 

RANS

• Morgan et al - ILES

• You et al - LES (dynamic Smagorinsky)

• Franck & Colonius - LES (both types Smag) & ILES

• Postl & Fasel - “coarse-grid” DNS
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RANS parametric study
steady suction, from Rumsey & Greenblatt

- RANS consistently overpredicted bubble length, as increased 

suction lessened its size
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RANS parametric study
steady suction, from Rumsey & Greenblatt
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RANS parametric study
steady suction, from Rumsey & Greenblatt
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RANS parametric study
steady suction, from Rumsey & Greenblatt

- RANS did fair job predicting suction trends (bubble-length slope low)

- URANS Results for oscillatory control not as favorable
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Subsequent CFD improvements
steady suction case, figure from You et al

URANS

DES

LES (3 sets)
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Subsequent CFD improvements
LES example from You et al

LES

experiment
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Results from workshop
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Results from workshop

+some newer results
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Summary - case 3

• What’s new
– RANS/URANS

• Trends for steady suction can be obtained in fair agreement 
with experimental trends (oscillatory control not so good)

• Can get right answer (bubble length) for wrong reason with k-
epsilon, for example

• Computing with or without plenum not a big factor when 
looking at global flow field properties

– DES

• Shown to work well for baseline case

• Generally no benefit for smaller bubbles (issues related to 
RANS-LES interface location and insufficient eddy content)

– LES & coarse-grid DNS

• Can yield very good results
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Summary - case 3

• Remaining challenges

– Is there bubble size small enough for which 

RANS/URANS predicts physics & 

reattachment well?

– Improve blended RANS-LES methods like 

DES to work more consistently, especially for 

cases with small separations

– How well can LES predict trends due to jet 

strength, Re, frequency, etc?

– Can LES-type simulations be used to help 

improve RANS/URANS models for this class 

of flows?
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Conclusions

• CFD increasingly called upon to predict 
synthetic-jet flows

• Need to establish confidence in CFD

– Through verification/validation studies and 

records of documented successes & failures

• Workshops such as CFDVAL2004 are an 
important part of this documentation
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Important to “follow through” and 

address challenges that remain

- additional follow-up flow control CFD workshops would be useful
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End



Backup slides

57



58

Hump configuration
Two 2-D grids employed: fine=210,000 points, medium=53,000 points
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2-D oscillatory control
achieved by use of rigid piston spanning the model, driven by series of voice 

coil actuators
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Phase-averaged profiles at 
x/c=0.66
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