Summary of the CFDVAL2004 Workshop and Follow-on Results

Christopher L. Rumsey
NASA Langley Research Center
Hampton, VA
8/17/2005

Summary

- This talk is in 2 parts:
 - 1st part is summary of the CFDVAL workshop,
 March 2004, which examined 3 flow-control validation cases (See AIAA Paper 2004-2217 and http://cfdval2004.larc.nasa.gov)
 - 2nd part is summary of the 11th ERCOFTAC/
 IAHR turbulence modeling workshop continuation of Case 3, April 2005 (hump model) and comparison with CFDVAL

Introduction

- CFDVAL2004 3-day workshop held March 2004 in Williamsburg, VA
- 3 cases (experiments performed at NASA LaRC)
 - Increasing geometric/physical complexity
 - Measured using multiple instrumentation systems
 - Designed for CFD validation, not highest performance
- 75 participants at the workshop
- 7 countries (62 U.S., 4 France, 3 Italy, 2 Germany, 2 Japan, 1 U.K., 1 Switzerland)
- Representation from universities, companies, and public sector research laboratories

Case 1

Synthetic jet in quiescent air

8 contributors25 separate cases

Case 1 Details

- Synthetic jet flow in and out of slot (1.27mm wide by 35.56mm long)
- Driven by side-mounted circular piezoelectric diaphragm inside cavity
 - 444.7 Hz
 - Max velocity out of slot approx 25-30 m/s
- Flow issues into enclosed box 0.61m per side

Cavity

Methodologies

- Structured & unstructured URANS (various turbulence models: SA, SST, k-e, nonlinear k-e, EASM, RSM)
- Mostly 2nd order in space and time
- Several Laminar, 1 RANS/LES, & 1 LES
- 1 reduced-order model (quasi-1-D inside slot) 4th order in space and time
- Mostly 2-D; a few 3-D (periodic)
- Most modeled (an approximation of) the cavity, 2 applied BCs at slot exit
- Wide variety of grid sizes and time steps

Average v-velocity at centerline (x=0)

Phase-averaged v-velocity profiles at y=4 mm, phase=135 deg

Example contours of phase-averaged v-velocity, phase=135 deg

experiment

NASA-tlns3d-sa(fine)

Case 2 Synthetic jet in crossflow

Case 2 Details

- Synthetic jet flow in and out of circular orifice (6.35mm diameter)
- Driven by bottom-mounted square-shaped piston (on elastic membrane) inside cavity
 - Cavity is approx 1.7mm deep (tunnel on)
 - 150 Hz
 - Max velocity out of slot approx 43 m/s (=1.3Uinf)
- Flow issues into turbulent boundary layer (M=0.1, BL thickness approx 21mm)

Cavity

Methodologies

- Structured & unstructured URANS (various turbulence models: SA, SST, k-e, EASM)
- 1 LES
- All methods 2nd order in space and time
- Both full-plane and half-plane modeled
- 4 modeled a cavity, 1 did not
- Wide variety of grid sizes and time steps

Time histories above orifice

x=50.63mm, y=0, z=0.4mm

u-velocity

w-velocity

Average u-velocity on centerplane

Phase-averaged u-velocity on centerplane 1D downstream

phase, deg

phase, deg

phase, deq

Phase-averaged u-velocity on centerplane 1D downstream

phase=120 deg

Example contours of phase-averaged u-velocity (1D downstream) • •

Case 3

Flow over a hump model

13 contributors56 separate cases

Case 3 Details

- Flow over wall-mounted hump (chord = 420mm)
 - Slot near 65%c (close to where separation occurs)
 - Nominally 2-D flow endplates at both sides
 - M=0.1
- Two mandatory test cases
 - No flow control (no flow through slot)
 - Steady suction (mdot = 0.01518 kg/s)
- One optional test case
 - Synthetic jet (138.5 Hz, peak velocity out of slot = 27m/s)
 - Driven by bottom-mounted piston deep inside cavity

Sketch of case 3 comparison locations

Methodologies

- Structured & unstructured RANS (various turbulence models: SA, SST, k-e, k-o, cubic k-e, EASM, v2f)
- Mostly 2nd order in space (some 4th order)
- A few blended RANS/LES (DES, LNS, FSM)
- 1 DNS (under-resolved near wall)
- Mostly 2-D; some 3-D
- Most modeled cavity, several did not
- Many parametric variations performed; 2-D grids were generally very well-resolved

No-flow-control Cp's

Blockage due to side plates

Separation and reattachment locations no-flow-control case

Example no-flow-control streamlines

Experiment

UK-ghost-sst-1

Sample u-velocity profiles at x/c=1.2

(downstream of experimental reattachment)

Suction Cp's

Separation and reattachment locations suction case

Example suction streamlines

Experiment

UK-ghost-sst-1

Velocity and turbulent shear stress at x/c=0.8 (inside separation bubble)

Sample u-velocity profiles at x/c=1.0

(downstream of experimental reattachment)

Mean oscillatory-case Cp's

11th ERCOFTAC/IAHR Turbulence Modeling Workshop Results for Hump Model Case

April 2005

Methodologies

- RANS
 - -S-A
 - k-epsilon
 - hybrid k-epsilon+SSG
 - RSM (elliptic blending model)
 - RSM (SSG)
- 3-D DES
- 3-D LES (Smagorinsky)

(BLUE means new category of method, not used at CFDVAL2004)

Noflow, C_p

Noflow, C_f

Noflow, x/D = 0.8

Noflow, x/D = 0.8

Separation and reattachment locations no-flow-control case

Sample u-velocity profiles at x/c=1.2

(downstream of experimental reattachment)

CHALMERS

11th ERCOFTAC Workshop 2005

Noflow,
$$x/D = 1.2$$

57 42

Suction, x/D = 0.8

Suction, x/D = 0.8

Separation and reattachment locations suction case

Sample u-velocity profiles at x/c=1.0

(downstream of experimental reattachment)

CHALMERS

11th ERCOFTAC Workshop 2005

Suction,
$$x/D = 1.0$$

46

Oscillatory 80^o , C_p

Oscillatory 170^o , C_p

Oscillatory 260^o , C_p

Oscillatory 350^o , C_p

Oscillatory, C_p

(long-time average)

Hump reattachment point (CFL3D)

	Exp.	CFD	CFD
		(fine)	(med)
No- Flow	1.11	1.24	1.23
Suction	0.94	1.10	1.11
Osc.	≈0.98	1.22	n/a

Case 3 Summary

- Overall, results from Sweden ERCOFTAC/IAHR workshop were consistent with results from CFDVAL2004 workshop:
 - RANS models (including full RSM) generally overpredict separation length (underpredict magnitude of u'v' in separated region)
 - DES (blended LES-RANS) predicts correct separation length for noflow-control, but overpredicts length for suction
 - Differences in upstream and downstream BCs probably responsible for some of the variation among CFD results (e.g., Cf's in front of hump)
 - To get Cp's, side-plate blockage generally must be accounted for
 - Modeling the cavity itself does not appear to be crucial for steady cases
- New LES results exhibited some odd behavior, but appear promising with regard to predicting separation correctly
- For oscillatory case, RANS captures general unsteady character (vortex strength & convection) well, but again overpredicts separation length

Conclusions

Case 1 Conclusions

- Wide CFD variation exhibited
- Computing internal cavity problematic and did not appear to produce any significant benefit
- Difficult experiment to simulate
 - Case probably mostly laminar / transitional
 - Piezo-electric driver and its effects (e.g., non-sinusoidal jet velocity at exit) difficult to model in CFD
 - Ring vortices (3-D effect) formed from slot ends probably influence flowfield away from wall

Case 2 Conclusions

- Wide CFD variation exhibited
- LES and URANS on similar-sized grids yielded similar results (in mean-flow quantities)
- CFD missed some aspects of flow at cavity exit
 - Experiment produced large cross-flow velocity component at orifice exit (not modeled by CFD)
 - Need additional documentation of experimental orifice exit BCs
- Different turbulence models had relatively small impact

Case 3 Conclusions

- CFD must account for blockage to match Cp's
- RANS CFD generally overpredicted separation length and underpredicted turbulent shear stress in separated region
 - This is a turbulence modeling issue
 - CAN RANS TURBULENCE MODELS BE FIXED?
 - But even DNS, LES, and blended RANS-LES were not consistently better
 - ONE GUESS: THIS MAY BE BECAUSE THESE METHODS ARE NOT EASY TO RUN CORRECTLY (grid resolution, spanwise extent, sufficient time, blending issues)

Next Steps / Future Directions

- For synthetic jets, reduce CFD uncertainty by employing identical BCs.
- For hump, turbulence models (for RANS) need to be improved to increase mixing in separated region to bring about earlier reattachment and recovery.
- Possible further validation against hump model with oscillatory (synthetic jet) control at next (12th) ERCOFTAC turb. modeling workshop.
- Note: the Hump case is now officially a part of the ERCOFTAC Database (Classic Collection). It is listed as Case C.83.