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The physics of juncture flow
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• We are interested in CORNER SEPARATION in a wing-
body juncture flow

• Flow physics of wing-body juncture flows is complex; and 
some aspects are not well understood

– Several vortical structures coexist: e.g., Horseshoe Vortex 
(HSV), corner vortex, stress-induced vortex

– Many factors—such as incoming boundary layer momentum 
thickness, wing bluntness, and wing sweep—also play some 
role

– There is consensus (emerging over recent years) that more 
accurate modeling of the Reynolds stresses is a minimum 
requirement for predicting separated juncture flows

• Because these stresses control the development of the 
near-corner stress-induced vortex

• This stress-induced vortex can contribute to the delay in 
the initiation of corner separation

From AIAA J 54(2), 386-398, 2016 (Bordji et al) 
with typo corrections

Leading edge corner vortex

Stress-induced vortex
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The physics of juncture flow, cont’d
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• P1 generates vorticity via transverse pressure gradient or body force = 
Prandtl’s secondary flow of the first kind

– HSV and leading edge corner vortex are examples of this
• P2+P3+P4 are responsible for maintaining secondary currents of 

Prandtl’s second kind (present only in the turbulent boundary layer)
– The stress-induced vortex is created/supported by these terms

Mean streamwise (x-direction) vorticity equation (from Perkins, JFM 44(4), 721-740, 1970):

From Perkins, 1970
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Previous juncture flow work
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• Some earlier experiments
– Gessner (e.g., JFM 58(1), 1-25, 1973)

• Square duct
– Barber (AIAA J Aircraft 15(10), 676-681, 1978)

• Unswept strut on flat plate
– Simpson et al. (e.g., Ann. Rev. Fluid Mech. 33, 415-443, 2001)

• Mostly focused on HSV and bi-modal unsteadiness (not so much on corner 
separation)

• Many other researchers have focused on the HSV
– Gand et al. (e.g., AIAA J 53(10), 2869-2877, 2015)

• Unswept wing on flat plate

• Some earlier CFD
– Square duct:  e.g., Pettersson Reif & Andersson (FTC 61, 41-61, 2002)
– Mostly focusing on HSV:  e.g., Aspley & Leschziner (FTC 67, 25-55, 2001)
– Unswept wing on flat plate:  e.g., Gand et al. (Phys Fluids 22, 115111, 2010), Bordji et al. 

(AIAA J 54(2), 386-398, 2016) 
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Overview of the NASA JF experiment
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• Main purpose:
– Collect data to help assess/improve the ability of existing CFD models to predict the onset and extent 

of the three-dimensionally separated flow near the wing juncture trailing edge region of a full-span 
swept wing-body configuration

• The Juncture Flow (JF) test is designed to be a “CFD Validation-Quality” experiment
– “Experiment should include the measurements of all information necessary for a thorough and 

unambiguous CFD validation study, including boundary conditions, geometry information, and 
quantification of experimental uncertainties”

• Much time and effort was devoted to preparing this experiment
• Precursor CFD and risk-reduction experiments helped to downselect to the final configuration
• Developed internal LDV tools and procedures* for acquiring very-near-wall flowfield data

• Experimental campaigns in NASA’s 14x22 wind tunnel:
– Late 2017 and Spring 2018 – F6-based wing (completed, data released)
– Early 2020 – F6-based wing with LE extension (resolve issues from first test, fill out dataset, include 

additional PIV data collection)
– 2021 – possibly NACA 0015-based wing (incipient separation)

*AUR, Inc. and NASA Langley
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Fuselage Length: 4.84 m
Wing Span: 3.4 m
Truncated DLR F6 Wings
Planform Break Chord: 0.56 m

F6 with LE extension

F6 Wing Root Profile

NASA JF model in NASA Langley 14- by 22-foot tunnel

separation region

Wings and fuselage are tripped
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NASA JF model

Experimental data to date have been acquired on both configurations, but primary focus of CFD has been with 
“horn” (leading edge extension)

• Horn mitigates size/strength of the horseshoe vortex
• Less global unsteadiness (bimodal behavior)
• More representative of today’s aircraft
• More amenable to Reynolds-averaged Navier-Stokes (RANS) analysis
• Upcoming test only uses the F6 configuration with “horn”
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Oil-Flow VisualizationSteady/Unsteady Pressures

IR Imaging

LDV Measurements Geometry
Dataset & details available at:

https://turbmodels.larc.nasa.gov/Other_exp_Data/junctureflow_exp.html

Junction Model

CFD validation experiment

Boundary Conditions
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532nm laser: ①0MHz and ②-200MHz, 532nm laser:③0MHz, ④-80MHz and ⑤350MHz, 488nm 
laser: ⑥-200MHz and ⑦0MHz 

Figure 1. Schematic of SH3CompLDV probe. 
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Off-axis receiving optics
• Reduces near-wall flare noise
• Effectively reduces MV length    

(180 µm)

Fiber-optic based probe head
• Five green (532 nm) laser beams
• Velocity measurements in three 

nonorthogonal directions
• 90 mm working distance
• MV diameter of 140 µm

LDV probe near wing TE region

Laser Doppler Velocimetry (LDV)
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To date, only risk reduction testing 
has been performed for PIV

Particle Image Velocimetry (PIV)

Additional PIV data will be 
acquired in January 2020

the separated flow is highly unsteady
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Many NASA JF papers are available

• Key papers:

– Kegerise, M. A. and Neuhart, D. H., “An Experimental Investigation of a Wing-
Fuselage Junction Model in the NASA Langley 14- by 22-Foot Subsonic Tunnel,” 
NASA/TM-2019-220286, June 2019.

– Kegerise, M. A., Neuhart, D. H., Hannon, J. A., Rumsey, C. L., "An Experimental 
Investigation of a Wing-Fuselage Junction Model in the NASA Langley 14- by 22-Foot 
Subsonic Wind Tunnel," AIAA-2019-0077, January 2019.

– Rumsey, C. L., Carlson, J.-R., Ahmad, N. N., "FUN3D Juncture Flow Computations 
Compared with Experimental Data," AIAA-2019-0079, January 2019.

– Lee, H. C., Pulliam, T. H., "Overflow Juncture Flow Computations Compared with 
Experimental Data," AIAA-2019-0080, January 2019.

– Rumsey, C. L., Carlson, J.-R., Hannon, J. A., Jenkins, L. N., Bartram, S. M., Pulliam, T. 
H., Lee, H. C., "Boundary Condition Study for the Juncture Flow Experiment in the 
NASA Langley 14x22-Foot Subsonic Wind Tunnel," AIAA-2017-4126, June 2017.

– Kegerise, M. A. and Neuhart, D. H., "Wind Tunnel Test of a Risk-Reduction 
Wing/Fuselage Model to Examine Juncture-Flow Phenomena," NASA/TM-2019-
219348, November 2016.

THE EXP DATA

EXP data summary

CFD comparisons

CFD comparisons

CFD BC study in tunnel

EXP risk reduction

(These and other papers are available on the website)

https://turbmodels.larc.nasa.gov/Other_exp_Data/JunctureFlow/Papers/NASA-TM-2019-220286-Kegerise-Neuhart-JF.pdf
https://turbmodels.larc.nasa.gov/Other_exp_Data/JunctureFlow/Papers/AIAA-2019-0077-Kegerise-LDV.pdf
https://turbmodels.larc.nasa.gov/Other_exp_Data/JunctureFlow/Papers/AIAA-2019-0079-Rumsey-FUN3DCFD.pdf
https://turbmodels.larc.nasa.gov/Other_exp_Data/JunctureFlow/Papers/AIAA-2019-0080-Lee-OVERFLOWCFD.pdf
https://turbmodels.larc.nasa.gov/Other_exp_Data/JunctureFlow/Papers/AIAA-2017-4126-Rumsey-JF-BCs.pdf
https://turbmodels.larc.nasa.gov/Other_exp_Data/JunctureFlow/Papers/NASA-TM-2016-219348-Kegerise-Neuhart-JF.pdf
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Taste of (RANS) CFD results to date
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• Initial RANS results and comparisons with experiment (F6 wing with LE extension) have 
been made with FUN3D and OVERFLOW
• AIAA-2019-0079 and 0080
• Included grid density studies and exploration of free-air vs. in-tunnel computations (more to be 

shown today, putting results from the 2 codes together)
• Running CFD with wind tunnel walls

• Is do-able with RANS, but includes some challenges:
• Properly matching the wind tunnel’s calibration procedure (see, e.g., NASA/TM-2018-

219812)
• Difficulty attaining perfectly consistent BCs between different codes and different grids 

when iterating the back pressure (esp. if there is separation present in the diffuser)
• Will be more difficult for scale-resolving simulations

• Running CFD in free air is a viable option to investigate turbulence model effectiveness in juncture 
region
• The wind tunnel walls, mast, and sting have relatively minor influence* (see AIAA-2020-1304)

• Effect of as-built shape, aeroelasticity, and tripping has not yet been explored with CFD, but their 
effects are currently assumed to be relatively small*

• However, characterizations of the wind tunnel, as-built geometry, etc. are still a major part of our 
study, and are considered crucial knowledge when comparing with CFD

* On the main quantities of interest in the junction region
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Flow conditions
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• Reynolds number based on crank chord = 2.4 million (+-0.3%)
• Crank chord = 557.17 mm (the crank is the location of the break in the wing)

• Alpha, nominal uncorrected model incidence angles in tunnel (for the LDV data) ranged from 
-2.54 to -2.48 (nominally -2.5) and +4.97 to +5.04 (nominally +5.0) deg.

• Mach number ranged from about 0.175 to 0.205 (nominally 0.189)
• Velocity ranged from about 58 to 72 m/sec (nominally 64.36 m/s)
• Temperature ranged from about 275 to 308 K (nominally 288.84 K)
• Dynamic pressure ranged from about Q = 2107 to 2921 Pa (nominally 2476 Pa)
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Oil-Flow
Visualization
(a = 5 deg)

SA-RC-QCR2000 SA-RC

Corner flow separation, example comparisons with RANS

F6-based wing with LE extension
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Mean velocity and Reynolds stress profiles, example comparisons

x= 2747.6 mm, yo-y = 1 mm
F6-based wing with LE extension

SA-RC
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Mean velocity and Reynolds stress profiles, example comparisons

x= 2747.6 mm, yo-y = 1 mm
F6-based wing with LE extension

SA-RC-QCR2000

Key factor influencing improved 
separation prediction with QCR 
appears to be the difference 
between the turbulent normal 
stresses (upstream of separation)
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Mean velocity and Reynolds stress profiles, example comparisons

x= 2747.6 mm, yo-y = 1 mm
F6-based wing with LE extension

SA-RC-QCR2000

May encourage/promote stress-
induced vortex deep in the 
corner, which helps to delay 
onset of separation
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Mean velocity and Reynolds stress profiles, example comparisons

x= 2747.6 mm, yo-y = 1 mm
F6-based wing with LE extension

SA-RC-QCR2000

Missing u’u’ near the wall here 
means missing it everywhere here

For the purpose of improving turbulence 
models, it also may help to perform 
analysis in the local body-surface axis 
system, because in the global fuselage-
based axis system, errors in ulocal’ will 
appear to influence other components

Approx BL thickness on fuselage
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Mean velocity and Reynolds stress profiles, example comparisons

x= 2852.6 mm, yo-y = 1 mm
F6-based wing with LE extension

SA-RC-QCR2000

Once you reach separation 
location of the experiment, RANS 
CFD is already off, and 
agreement is very poor here and 
downstream
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Current status, experiment
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• High-quality flowfield and surface data has been acquired and released, toward goal of CFD 
validation of juncture flow

• Breakthrough use of on-board LDV and PIV laser measurement systems in a major NASA 
production wind tunnel

• Data for F6-based wing with and without LE extension:
– Oil flow, surface pressures, unsteady pressures
– LDV: mean velocity, Reynolds stresses, and velocity triple products in three areas
– PIV:  risk-reduction so far; data expected from the 2020 test

• Improving the input data for the purpose of CFD validation:
– Laser scans of as-built shape
– Laser scans of mast/sting configurations relative to tunnel walls
– Photogrammetry to determine wing shapes under load
– Pressures along diffuser floor
– Wall rakes on walls and ceiling to record BL thicknesses and growth
– IR thermography to verify trip effectiveness
– On the model itself, flow measured well upstream on the fuselage nose
– Attempts made to measure details of tunnel’s incoming freestream
– Test section pressures along walls and ceiling (TBD)
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Next steps

• CFD:
• Collate learnings from the current special sessions
• Additional Special Sessions to be held on “Separated Juncture Flow” at AIAA Aviation 2020 
• JF test case will be included in a future workshop on “High Fidelity CFD” in January 2021 (focus on SA-QCR 

verification)
• Other CFD workshop possibilities?
• Research to improve RANS CFD (specifically SA-based QCR) is being pursued, by making use of the JF LDV data

• Experiment:
• 6-week test in early 2020 – resolve issues from first test, fill out dataset, include additional PIV

• Configuration:  F6 wing with LE fillet
• Unusual surface pressures seen on parts of the fuselage
• Fill in gaps upstream of separation
• Acquire several LDV planar surveys
• Additional repeat runs
• Include a third angle of incidence with more separation (planned: 7.5 deg)
• Acquire PIV planar data for direct comparisons with LDV

• Tentative 8-week test in 2021 – incipient separation
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CFD Special Sessions at AIAA SciTech 2020
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• RANS update using FUN3D and OVERFLOW (Rumsey, Lee, Pulliam, NASA LaRC & Ames)
• RANS using k-kL-based models (Abdol-Hamid, Ahmad, Carlson, NASA LaRC)
• RANS using RSM (Eisfeld et al, DLR)
• WMLES (Iyer and Malik, NASA LaRC)

• WMLES (Lozano-Duran, Moin, Bose, Stanford & Cascade)
• Hybrid LES-RANS (Jansen et al, U Colorado Boulder)
• LB (Duda and Laskowski, Dassault)

LES = large eddy simulation
WMLES = wall-modeled LES
LB = Lattice-Boltzmann
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Some things to look for in these JF special sessions
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• How well/poorly do the various RANS models perform?
• What aspects can they capture well?  Where are they most lacking?
• Do the RANS models need to be improved?  How?
• Would it be “good enough” for RANS to predict the mean corner separation size, but none of the 

unsteadiness or details in & downstream of the separation region?  What happens downstream of 
separation?

• Are the RANS codes consistent?
• Is grid generation still a bottleneck?  Can automatic grid adaption help?

• Are the hybrid scale-resolving methods capable of tackling this type of flow yet?  In the mean?  
Regarding separation dynamics?

• Is wall-resolved LES going to be necessary?
• What are the biggest hurdles to overcome for the hybrid scale-resolving methods?
• Which methods work best?
• How much time and expertise is required to compute this flow?
• Are the hybrid scale-resolving codes consistent?

• How dependent are the solutions on the grid?  On the numerics?
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Tomorrow’s special session ends with a ½ hour general discussion time
Please join us!


