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EXECUTIVE SUMMARY

The results of a three year experimental campaign aimed at comprehensively
documenting the separated flow over a three-dimensional bump are presented with
the purpose of generating a benchmark experimental database useful in validating
computational fluid dynamics (CFD) flow simulations. The bump model geometry
was designed to provide well-defined and repeatable smooth-body flow separation
conditions that were suitable for both experiments and simulations. The bump had
a Gaussian streamwise profile with a constant height equal to 8.5% of its width
over the central 60% of the test section width. The remaining 40% were outboard
spanwise portions that gradually taper to zero using an error function profile to
minimize side-wall boundary layer effects. The model was immersed in a turbulent
boundary layer that was developed on a suspended flat plate in the Notre Dame
Mach 0.6 Wind Tunnel. In order to document the effect of the incoming bound-
ary layer thickness on the flow separation, the bump model could be located at
two streamwise positions. The mean velocity and turbulence intensity of the wind
tunnel freestream flow field and approaching turbulent boundary layer were fully
documented. The measurements of the flow separation region included surface visu-
alization, wall shear stress using oil-film interferometry, mean and dynamic surface
pressure, and planar and stereoscopic particle image velocimetry. The experiments
were conducted over a range of Mach numbers from 0.05 to 0.2 corresponding to a
range of Reynolds numbers based on the test section spanwise dimension (0.914m)
of 1.0 x 10 < Rep = U L/v < 4.0 x 10°. The bulk of the results are presented
for the higher Mach number conditions of 0.1 and 0.2 with Re;, = 2.0 x 10° and
4.0 x 108, respectively. Extensive uncertainty analysis of the data was performed.
The data is archived in the NASA Langley Turbulence Modeling Resource website at
https://turbmodels.larc.nasa.gov/Other_exp_Data/speedbump_sep_exp.html. In ad-
dition to the experiments, a computational effort was made in parallel by the CFD
group at Boeing Research & Technology highlighting the usefulness of the data set,
and is outlined in the accompanying CFD report.
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CHAPTER 1

INTRODUCTION

It is well known that CFD methods have significant difficulty in accurately predict-
ing turbulent separated flows relevant to off-design aerodynamic conditions. NASA’s
Vision 2030 study|[7] outlined the desired path towards revolutionizing the aerospace
communities CFD capabilities. The vision focuses on the improvement of high per-
formance computing (HPC), as well on the understanding of the underlying physics
behind challenging aerodynamic flows. Of the many interesting and important fluid
flow problems, perhaps the largest gap in CFD capabilities manifests in the ability
to predict viscous turbulent flows with ranging degrees of boundary layer separation
and subsequent reattachment. For improved model development, there is clearly a
need for high-quality, detailed benchmark experimental data sets that may be used
for Reynolds-Averaged Navier-Stokes (RANS) model development, correction and
validation purposes. This need was the motivation for performing a series of archival
benchmark validation wind tunnel experiments on smooth body turbulent boundary
layer flows leading to incipient separation, as well as small-scale and large-scale sep-
aration cases with subsequent reattachment for the purpose of CFD validation. It
builds upon previous archival experiments performed on a two-dimensional separa-
tion ramp at the same wind tunnel facility in partnership with the CFD group at
NASA Langley Research Center under the Transformative Tools and Technologies
Program [8, 9]. These experiments highlighted the highly three-dimensional nature
of the separation and recirculation region that was exhibited over a two-dimensional
smooth backward facing ramp with varying degrees of APG, despite an observed two-
dimensional reattachment. Of the major findings, the complex surface flow topology
caused by the surface curvature and APG was described carefully, resulting in an
assertion that the surface flow characteristics could be extrapolated to the side-walls
and downstream in off-wall planes (this data is also archived in the NASA Turbulence
Modeling Resource website).

This led to the introduction of a three-dimensional tapered Gaussian bump. The
current experiments were designed and executed under a partnership between the
CFD group within Boeing Research and Technology and the experimental aerody-
namics research group at the University of Notre Dame. The Boeing CFD group
designed the specific bump geometry to provide well-defined, repeatable conditions
for experimental measurements on a model that was ideally suited to produce bench-
mark data for coordinated experimental and simulation campaigns. A preliminary
study conducted by Williams et al.[10] showed that the bump geometry produced a
separation region that was independent of side-wall interactions, and that it will serve
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as an effective canonical shape for the purpose of further investigating the mecha-
nisms behind flow separation, and validating the CFD codes that attempt to model
it.

The present experiment was performed in the Notre Dame Mach 0.6 closed-
circuit wind tunnel, which is a high Reynolds number, temperature controlled, low-
turbulence wind tunnel specifically designed for fundamental aerodynamic research.
The experiments were conducted over a range of Mach numbers from 0.05 to 0.2
corresponding to a range of Reynolds numbers based on the test section spanwise
dimension of 1.0 x 10% < Re; = UsoL/v < 4.0 X 10°, as shown in Tables 4.1 and
4.2. With the archival nature of the experiments in mind, emphasis was placed on
fully documenting the wind tunnel mean and turbulence characteristics, as well as
the turbulent boundary layer inflow conditions to the bump model. The docu