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Résumé

Abstract

Spalart P. R., Allmaras S. R., La Recherche Aérospatiale, 1994, n° 1, 5-21

Modélisation d’écoulements aérodynamiques turbulents par une équation unique. Une équation de
transport de la viscosité turbulente est assemblée de maniére empirique, & 1'aide d’arguments d’analyse
dimensionnelle, d’invariance galiléenne et de dépendance sélective par rapport i la viscosité moléculaire.
Le modele ressemble i ceux de Nee et Kovasznav, de Secundov et al. et de Baldwin et Barth. L’équation
comporte un terme non visqueux de destruction qui est fonction de la distance 2 la paroi. Contrairement
aux modeles algébriques et aux premiers modeéles a une équation, celui-ci est ponctuel. En effet, la solution
de I’équation en un point ne dépend pas de celles en d’autres points. Ce modile convient donc 2 toute
structure de maillage. En outre, il est numériquement souple en ce qui concerne la résolution et la raideur
au voisinage de la paroi. Les conditions limites 4 la paroi et dans 1’écoulement libre sont triviales. Le
modele donne une transition laminaire-turbulente relativement lisse aux points définis par I'utilisateur. Un
simple « indice de turbulence » est donné pour déterminer les régions de la couche limite ol le modéle
est actif. Il est étalonné sur des zones de mélange, des sillages et des couches limites de plaque mince.
La prévision des couches limites dans les gradients de pression est en assez bon accord avec les résultats
expérimentaux. Des solutions des équations Navier-Stokes stationnaires bidimensionnelles sont présentées,
avec un décollement provoqué par un choc, et avec un bord de fuite émoussé. Ce modgle situe les chocs
légérement en amont par rapport au modele de Johnson et King. Il fonctionne bien dans le sillage proche
et donne des résultats prometteurs pour des écoulements plus complexes. Des résultats allant de moyens
4 bons ont déja été obtenus par 8 équipes différentes, y compris dans le cas de profils hypersustentateurs
et de voilures transsoniques.

Mots-clés : (lexique CEDOCAR) : Turbulence — Viscosité — Modéle mathématique — Equation transport
— Mélange turbulent — Sillage turbulent — Couche limite.

A transport equation for the turbulent viscosity is assembled, using empiricism and arguments of
dimensional analysis, Galilean invariance, and selective dependence on the molecular viscosity. It has
similarities with the models of Nee and Kovasznay, Secundov et al., and Baldwin and Barth. The equation
includes a non-viscous destruction term that depends on the distance to the wall. Unlike algebraic and early
one-equation models the new model is local, in the sense that the equation at one point does not depend
on the solution at other points. It is therefore compatible with grids of any structure. It is numerically
forgiving, in terms of near-wall resolution and stiffness. The wall and freestream boundary conditions are
trivial. The model yields relatively smooth laminar-turbulent transition, at points specified by the user. A
simple “turbulence index” is provided to determine the regions of a boundary layer in which the model
is active. The model is calibrated on 2-D mixing layers, wakes, and flat-plate boundary layers. It yields
satisfactory predictions of boundary layers in pressure gradients. Two-dimensional steady-state Navier-
Stokes solutions are presented, including shock-induced separation and a blunt trailing edge. The model
locates shocks slightly farther forward than the Johnson-King model. It performs well in the near wake and
appears to be a good candidate for more complex flows. It has now been implemented by eight separate
groups; the results range from fair to good, including cases of high-lift airfoils and transonic wings.

Keywords: (NASA thesaurus): Turbulence-viscosity — Mathematical models — Transport equation —
Turbulent mixing — Turbulent wakes — Boundary layers. 3
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empirical constants in the
turbulence model

chord of an airfoil
skin-friction coefficient
pressure coefficient

lift coefficient

distance to the wall
empirical functions in the
turbulence model
intermediate variables
shape factor

turbulent kinetic energy
mixing length

freestream Mach number
chord Reynolds number

momentum-thickness
Reynolds number

strain-rate tensor

measure of the
deformation tensor

time

friction velocity
fluctuating velocity
components

mean velocity in x
direction

mean velocity components
edge velocity of boundary
layer :
freestream velocity

for airfoil

streamwise coordinate
Cartesian coordinates
distance to the wall

wall variable

direction of the
deformation tensor
thickness of the shear
layer

displacement thickness
turbulent dissipation rate
Karman constant, taken as
041

kinematic molecular
viscosity
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Vi kinematic turbulent, or
eddy, viscosity
working variable of the
turbulence model

G % vorticity

Qi; = 0U;/0x;—0U; Oz rotation tensor

Tt

o turbulent Prandtl number
f momentum thickness

T shear stress

X intermediate variable

I - MOTIVATION AND RELATED WORK

The aerodynamics community is ready to invest
in a new generation of turbulence models, more
onerous than the algebraic models but with a wider
envelope in terms of flow and grid complexity.
The Baldwin-Lomax model [1] made Navier-Stokes
calculations possible in situations that are awkward for
the Michel and Cebeci-Smith models [2, 3], because
the thicknesses of the boundary layer are not well
defined. The Johnson-King model [4] has by-and-large
fulfilled the demand for more accurate prediction of
shock/boundary-layer interactions, compared with the
purely algebraic models. However these models, even
when used in Navier-Stokes codes, are boundary-
layer models in spirit. Physically, they treat the whole
boundary layer as a single, tightly-coupled module,
which becomes incorrect when detached and multiple
shear layers are present. They rely on surveying
the velocity or vorticity profile on a smooth grid
line, roughly orthogonal to the surface, thus being
“non-local”. This becomes expensive and awkward
when an unstructured grid is used [5]. Even when
the only complication is that two solid bodies are
present, implementing an algebraic model requires
decisions that border on artificial intelligence and
cannot be fully automated. In addition, multi-block
and unstructured-grid methods are becoming more
common. Finally, we do not know of an algebraic
model that ensures continuity of the eddy viscosity
between the airfoil block and the wake block, in a
C-grid setting, while offering a plausible formula in
the wake. This is disturbing, and it can cause stability
problems [6]. Some methods incorporate a blending of
the two formulas, this mimicking a fransport equation.
However, it is done along grid lines, which are
arbitrary.

Transport-equation models such as k-e and higher
models are usually “local”, although some have
non-local near-wall terms, and have been available
for years. However, they are far from having
shown a decisive advantage for the prediction of
shock/boundary-layer interactions or separation from
smooth surfaces [7]. They are also much more difficult
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to use. This is not so much because of the extra
storage, but because they require finer grids near a
wall, involve strong source terms that often degrade
the convergence, and demand non-trivial upstream and
freestream conditions for the turbulence variables.
The near-wall problems often lead to the use of
wall functions, which are unwieldy and lose any
justification in the situation that matters most, namely,
separation.

The recent Baldwin-Barth model [8, 9] is an
attractive intermediate. It has only one equation and is
local, except for the y* dependence which they plan
to dispose of in the long term (B. Baldwin, personal
communication). It is derived from the k-e model,
through some further assumptions. Near the wall it
does not require finer resolution than the velocity field
itself. Depending on the version, it predicts adverse-
pressure-gradient cases and shock interactions better
than Baldwin-Lomax, but not consistently as well as
Johnson-King, as shown by Menter [10]. Its accuracy
will improve in time, and it is much more practical
than two-equation models.

The present project was prompted by Baldwin and
Barth’s work, and by the belief that generating a one-
equation model as a simplified version of the k- model
is not optimal. A one-equation model is simple enough
that it can be generated “from scratch”, which may
lead to better performance and certainly gives fuller
control over its mechanics. A case in point is the
Baldwin-Barth diffusion term, which is constrained by
the k-e ancestry and the further assumptions made.
We also allow a “semi-local” near-wall term, as
described below. Our calibration strategy is different.
We expect time to tell that the new model has the
same properties as that of Baldwin-Barth in terms
of compatibility with unstructured grids and benign
near-wall behavior, and is more accurate, especially
away from the wall, as well as slightly more robust.
For instance, it accepts zero values in the freestream.
The improved performance may be traced to a larger
number of adjustable constants, but these are all firmly
calibrated.

The roster of one-equation models also includes
those of Bradshaw, Ferriss and Atwell [11], Nee and
Kovasznay [12], Secundov and his co-workers [13],
Mitcheltree, Salas and Hassan [14], and Johnston [15].
Except for Secundov’'s and Baldwin and Barth’s,
these models are not local, as they use length
scales related to the boundary-layer thickness. This
contributes to the common claim that one-equation
models are not “complete”. The Secundov model was
entered in the Collaborative Testing of Turbulence
Models (CTTM, [16]) and Prof. Bradshaw was kind
enough to provide the one-page description that was
submitted. Dr. Secundov provided additional details
in personal communications as well as a list of
publications ranging from 1971 to 1986, all of them
in Russian. This model is presented as an evolution
of the Nee-Kovasznay model, but is local and rich
in near-wall and compressibility corrections. Some

versions also have a term designed to fit the round
jet, for instance, reflecting both the creativity of that
group and their ambition to create a “universal” model.
We have a more limited range of flows in mind, as
reflected in our title. Note that we have “reinvented”
their near-wall destruction term. It is expected for
simple empirical models, developed under roughly the
same constraints (invariance, etc.), to exhibit strong
similarities. However, the leeway is large enough to
produce models with widely different performance.

IT — PRESENTATION AND CALIBRATION
OF THE MODEL

II.1 — Overview

The model has four nested versions from the
simplest, applicable only to free shear flows, to the
most complete, applicable to viscous flows past solid
bodies and with laminar regions. As each additional
physical effect is considered, new terms or factors are
introduced and calibrated. They are identified by a
common letter subscript in the constants and functions
involved. The new terms are passive in all the lower
versions of the model, so that the calibration proceeds
in order. This presentation may seem heavy, but should
instructive as it allows the readers to critique the theory
or the calibration shell by shell and to test the relevant
version in the situation of their choice. It should also
help preserve some clarity in later alterations of the
model. The Appendix gives the equations for the
complete model.

I1.2 - Free shear flows

The central quantity is the eddy viscosity 14; the
Reynolds stresses are given by the constitutive relation
—1; t; = 214 5;;. There is no exact transport equation
for v, which we could approximate term by term. The
option of generating a “general” transport equation
and calibrating it with a sufficient number of cases is
also out of the question, because there is no limit to
the nonlinearities and cross-terms between the various
influences the turbulence is submitted to. Therefore,
we take an empirical approach.

We construct the model by gathering quantities,
derived from the mean flow field and from v, which
have Galilean invariance. For example, the mean
velocity U is not receivable, except of course in the
convection term. We then invoke common notions
of turbulence — for instance, related to its diffusion —
to assemble dimensionally correct terms that together
constitute a plausible transport equation for 1. In
this subsection we consider free shear flows at high
Reynolds numbers, and accordingly the molecular
viscosity is not allowed in the equation. The left-hand
side of the equation is the Lagrangian or material
derivative of vy : Dvy/Dt = v, /0t + U; vy /0z;.



On the right-hand side we provide a production term
and diffusion terms.

For the production term, the deformation tensor
OU; /dz; presents itself. Since v, is a scalar we seek a
scalar measure, denoted by S, of that tensor. Sv, then
has the desired dimension. We have used the vorticity
|w]| for S. Other plausible combinations would be the
strain rate /2 S;; Sy; or the norm of the whole tensor
VUi, ; Us, ;. We normalize any candidate so that it
reduces to |U,| in a simple shear flow. The argument
in favor of |w| is that, in the flows of interest to us,
turbulence is found only where vorticity is present,
with both emanating from the solid boundaries. There
are regions of vorticity without turbulence behind
shocks, but that vorticity is normally too weak to
produce much eddy viscosity. .

The production term, and in fact the restriction of
the model to homogeneous turbulence, is

Dv
Eti =cp1 Sy (1)

The subscript b stands for “basic”. The response of
the model in homogeneous turbulence is dull, but not
grossly inaccurate. The eddy viscosity is stationary
in isotropic turbulence (i.e., Dvy/Dt = 0, because
§=0). Experiments show that in such a flow the
energy k is approximately proportional to ¢~ [17].
Then the simplest combination that has the same
dimensions as v;, namely k*/e, slowly decays like
¢t~5 In anisotropic flows v, can only increase under
the effect of production, in a manner that depends
on the choice of S. That choice may be re-examined
later, but if we consider a shear flow with S = |U, | we
observe that 14 grows exponentially like exp(cy; S ).
This is the classical behavior for shear flow in the limit
of large time, with a growth rate in the 0.10 to 0.16
range according to experiments and direct numerical
simulations. Our calibration on inhomogeneous flows
yields values of ¢, between 0.13 and 0.14. Thus, we
do not emphasize homogeneous turbulence, but we
are not in strong conflict with it. The Baldwin-Barth
and Secundov models have rather large production
constants, at least 0.20. Note that we have not
found any plausible and invariant quantity that could
constitute a destruction term away from walls. We
return to this issue later.

The search for diffusion terms naturally focuses on
spatial derivatives of »;. Classical diffusion operators
are of the type V.([11/0]V1;). They conserve the in-
tegral of v;, save for boundary contributions. However,
there is no reason why the integral of 4 should be con-
served. Manipulations of two-equation models often
bring out diffusion terms that are not conservative, for
instance cross terms between Vk and Ve. By analogy
and to acquire a degree of freedom, we allow a non-
conservative diffusion term, involving first derivatives
of v,. We arrive at the following “basic” model:

Dy 1 .

D—; = Cp1 S Vi + ; [V-(Vt VV;) + Cp2 (VV;)Z]. (2)
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We break our convention for o, which belongs to
the ¢, series, because of the traditional notation of
Prandtl numbers.

The diffusion term of (2) conserves the integral
of the quantity »;7®?. Recall the lack of a
destruction term. This lack was responsible for a mild
inconsistency in isotropic turbulence (the ¢~ decay).
It could also invalidate the model in the class of shear
flows in which v, decreases (negative Dv;/Dt) such
as an axisymmetric wake. However, the diffusion term
can easily bring down the centerline value of v, and
the true constraint is that under (2) the integral of
vt cannot decrease. With the classical exponents
of the self-similar turbulent axisymmetric wake (length
scale oc 7, velocity oc t3), we find that the integral
increases provided that e, < 1.

A more important constraint is obtained from the
behavior of a turbulent front. The diffusion term admits
the following (weak) one-dimensional solution:

vt (z, t) = max (f), A {54_&1:_05-;;)3})’ 3

for any constant A. This is a linear ramp propagating at
the velocity —A (1+¢2) /0. If ¢5o > —1 it propagates
into the non-turbulent region, which is physically
correct. The equivalent of ¢;; is O in the Secundov
model (i.e., the diffusion term is conservative). It
equaled -2 in the original Baldwin-Barth model [8]
(i.e., the diffusion term conserves 1/v;) and is
somewhat below —1 in the published version [9], so
that under the diffusion term alone the turbulent front
recedes. We believe this effect is to blame for the
sensitivity of that model to the freestream value of v,
(or Ry). Note that Baldwin and Barth are constrained
in their choice of the ¢;; equivalent by the connection
with the k- model, in the original version, and by
their calibration in the log layer, in both versions.
We avoid this conflict thanks to a near-wall term
as explained below. The solution in (3) is of great
interest in practice, as it indeed gives the structure of
the solution at the edge of a turbulent region, where
the diffusion term dominates (see Figs. 2, 4, and 6,
below).

The fact that the dependent variable v is its own
diffusion coefficient is responsible for the existence of
weak solutions such as (3), and raises the possibility of
non-unique solutions whenever v, takes zero values.
Indeed if the initial condition is |x|, we have a singular
solution in which v; behaves like |z|'/(3¥%2) pear
x=0, and a smooth solution with 4, > 0 at x=0. The
difference is confined to a boundary layer near x=0. In
a numerical setting with straightforward second-order
centered differencing and a point at x=0, the weak
solution is obtained if the diffusion term is written
v: V2 +(1 4 Co2) (\71/?3)2, but the smooth solution is
obtained if it is' written as in (2). Other forms that give
the smooth solution are V2 (v2/2) + c32(Ve)? and

La Recherche Aérospatiale
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(1+c¢p2) V (14 Vve) — cpa v V2 vy, The later addition of
a term proportional to the molecular viscosity (§ IL.4)
formally resolves this non-uniqueness and leads to the
smooth solution with v, > 0. However, particularly at
high grid Reynolds numbers, it is desirable to use a
favorable form of the diffusion term.

Outside but close to a turbulent shear layer
the Reynolds stresses, particularly the diagonal
components, do not exactly vanish. However, they
are induced by pressure fluctuations and bear little
relationship to the local strain tensor. For that reason,
it 15 as well to have the eddy viscosity be zero
outside the turbulent region, and this is the value we
recommend in the freestream. In addition, the model is
essentially insensitive to non-zero values (which may
help some numerical solvers), provided that they are
much smaller than the values in the turbulent region.
This is due to the dominance of the turbulent region
(v > 0) over the non-turbulent one, as illustrated by
the ramp solution (3). This feature adds to the “black
box” character of the new model and represents a
substantial advantage over the Baldwin-Barth model
and many two-equation models, some of which are
highly sensitive to freestream values — notably that of
the time scale.

We now discuss the amplification of the eddy
viscosity by the production term, which is the only
one preserved by the linearization of (2) for small
v;. Consider the steady flow at a velocity U, past
a body of size L, with thin shear layers of thickness
8. Outside the shear layers the deformation tensor
is of order U, /L, and particles are subjected to

it for a time on the order of L/U,, (with the -

exception of the streamline leading to a stagnation
point). Thus, irrespective of the exact definition of
S, the logarithm of the amplification ratio will be
on the order of ¢,;, and small values will remain
small. In contrast in the thin shear layers near the
body the logarithm of the amplification ratio under

the effect of the production term alone would be

on the order of ¢, L/8, and therefore large in the
usual situation since L > §. Thus small values of
vy, whether inherited from the freestream, or resulting
from numerical errors, or introduced intentionally at
the “trip” as described later, will cause transition in
the thin shear layers only. By transition we mean
growth to such levels that the diffusion terms, which
are nonlinear, become active (the destruction term
introduced later is also nonlinear). The sequence of
exponential growth, followed by saturation at levels
on the order of U, &, is consistently observed.

We now calibrate the free-shear-flow version of
the model by requiring correct levels of shear stress
in two-dimensional mixing layers and wakes. Fair
values for the peak shear stress are 0.01 (AU)? in the
mixing layer and 0.06 (AU)? in the wake, where AU
is the peak velocity difference [17]. This gives two
constraints for three free constants c,;, o, and cyy,
and leaves a one-dimensional family of “solutions”
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Fig. 1. — Calibrated model constants. — locus
of solutions; x point selected for the calculations.

which is shown in figure / parameterized by the
Prandtl number, the easiest quantity to interpret. The
range of values we consider plausible is o € [0.6, 1].
The corresponding values.of ¢, are between 0.6 and
0.7 and, fortunately, satisfy our “guidelines” (i.e.,
—1 < ¢y £ 1) with a margin. The constant c¢,. is
introduced in § II,3.

Time-developing mixing-layer and wake solutions
were obtained numerically using centered second-
order finite differences, staggered for U and w4,
Runge-Kutta fourth-order time integration, and zero
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Fig. 2. — Profiles in a:zfime-developing mixing layer. Normalized with
velocity difference and time. Velocity profiles adjusted to the same
slope at y=0.
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values in the freestream. This artless treatment would
rapidly reveal adverse numerical properties in the
model. The growth of the layers was followed until
a self-similar state was attained. The solutions exhibit
the ramp structure at the edge of the turbulent
region, as seen in the mixing-layer case in figure 2.
The centered-difference solution cannot faithfully
reproduce a weak solution at the front, but the error
does not propagate.

Based primarily on the edge behavior, we favor
a fairly diffusive member of our “plausible” range,
namely o=2/3, ¢p; =0.1355, c;,=0.622. In the mixing
layer it gives a velocity profile close to that associated
with identical “rollers” of uniform vorticity (Fig. 2).
Very low values of o would be needed to bring it
close to the error-function profile, which is a common
approximation. That profile corresponds to uniform
eddy viscosity, which cannot actually be achieved with
low or zero freestream values. The hyperbolic-tangent
profile, another common approximation, requires a
diverging eddy viscosity outside the shear layer. In
the wake the eddy viscosity is 0.046 M on the
centerline and 0.036 M at the half-width, where M
is the momentum of the wake. Experiments can be
well matched with a uniform value of 0.044 M [18].
Calculations of a plane jet yield a spreading rate about
38% higher than the experimental value. Thus, the
jet/wake conflict is present, as with most models.
In aerodynamics, the wake deserves a much higher

priority.
I1.3 — Near-wall region, high Reynolds number

In a boundary layer the blocking effect of a wall
is felt at a distance through the pressure term, which
acts as the main destruction term for the Reynolds
shear stress. This suggests a destruction term in the
transport equation for the eddy viscosity. Dimensional
analysis leads to a combination —e, (1;/d)? as a
starting point, where d is the distance to the wall. The
subscript w stands for “wall”. This term is passive
in free shear flows (d >> &, so that the new term is
much smaller than the diffusion term) and therefore
does not interfere with our calibration up to this point.
The Secundov model includes this type of term. The
idea of a near-wall, but not viscous, “blocking” term
is also in Hunt [19]. It is related to algebraic models,
which take the smaller of two eddy viscosities. In
these models the outer eddy viscosity scales with the
boundary-layer thickness, and the inner eddy viscosity
is given by the mixing length, /! < d. In a classical
log layer we have S = u,/(kd) and v, = u, xd.
Equilibrium between the production and diffusion
terms (all positive) and the destruction term is possible
provided c,1 = cp1/6% + (1 + cp2) /0.

Tests show that the model, when equipped with the
destruction term, can produce an accurate log layer
in a U* (y*) plot (this requires an adequate treatment
of the viscous region, which is described in § II4.).
On the other hand it produces too low a skin-friction
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coefficient in a flat-plate boundary layer. This shows
that the destruction term as formulated above decays
too slowly in the outer region of the boundary layer.
To address this deficiency and allow a new calibration
we multiply it by a non-dimensional function f,,, which
equals 1 in the log layer. Note that ¢, is not negotiable
(i.e., we would not adjust the Cy at the expense of the
log-law constants), and also that we were not able
to obtain an accurate skin friction just by using the
freedom left by the free-shear-flow calibration (Fig. I).
With the destruction term the model becomes

D Vy
Dt

1 2
= [V.(ve Vir) + 2 (V)] = cut fu [%J )

Secundov et al. did not follow the f,, route.

The choice of an argument for f,, was inspired by
algebraic models, in which the mixing length plays a
major role near the wall. This length can be defined
by [ = /1/S and we use the square of [/kd for
convenience:

= Cp1 SV;

= (5)

"Esed
Both r and f,, equal 1 in the log layer, and decrease in
the outer region. Note that any dimensionally correct
function of (v4, d, S) that reduces to —c,,; £% u? in a
log layer would be as eligible as the destruction term
we have inserted in (4). A satisfactory f,, function is

ful®) = —_1 i
w g _9’ n cw ) (6)
g=7+Cu2 (r® =),
fo
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Fig. 3. - fu, function involved in the destruction term, Eq. (4-6).
APG: adverse pressure gradient; FPG: favorable pressure gradient.
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which is shown in figure 3. Results are most sensitive
to the slope of f,, at r=1, which is controlled by c,».
The step from g to f,, is merely a limiter that prevents
large values of f,, which could upset a numerical
scheme and give an undeserved importance to the fact
that S may vanish. The region r > 1 is exercised only
in adverse pressure gradients, and then rarely beyond

r=1.1. Having f,(0)=0 is not essential, because in

free shear flows the destruction term vanishes on
account of the & in its denominator. A reasonable
value for ¢,,5 is 2. We then calibrate c,,5 to match the
skin-friction coefficient in a flat-plate boundary layer

(Fig. I). We adopt the value of the CTTM, namely

Cr=0.00262 at Rg= 10* [16], which requires c,,2 =0.3
for 0=2/3. The boundary-layer tests relied on a code
written by Mr. D.Darmofal, of MIT, during a short
stay at Boeing.

Figure 4 shows the velocity, eddy-viscosity, and
shear-stress profiles in a flat plate boundary layer
at Ry~ 10*. The traditional shape factor H is 1.31,
the Clauser shape factor G = /2/Cf (H — 1)/H
is settled at 6.6, and the shape o/f {h‘(e proﬁlz:/ is
satisfactory. Notice again the ramp structure of v,
at the edge of the shear flow. The peak value of
Ve is 0.021Uqq 8", compared with 0.0168Uq, 3" in
the Cebeci-Smith model [3]. Conversely, the Cebeci-
Smith eddy viscosity is higher near y/6* = 1.

Figure 5 shows the wvelocity profile in wall
coordinates, illustrating the log layer and the smooth
departure from that log law in the outer region. Again,
the behavior in the viscous sublayer depends on the
material in § [I,4. The shape of the outer region
appears good, showing that the destruction term and
the f,, function are fair approximations, at least in this
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flow. The arrival at the freestream velocity is a little
too abrupt, as it was in the mixing layer (Fig. 2).
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The budget of 14 is shown in figure 6. The sum
(i.e., Dvy/Dt) is positive throughout. It is zero at the
wall, then roughly follows a ramp up to the edge of
the turbulent region. Its outer part is representative of
the outer part of either one of the free shear flows,
including the vanishing contribution of the destruction
term. The production is equal to the shear stress. In the
outer part the diffusion is primarily responsible for the
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advance of the turbulent front, in qualitative agreement
with the budgets of “legitimate” turbulence quantities
such as the kinetic energy. Near the wall the diffusion
again makes a strong positive contribution, balanced
by the destruction. This is not in qualitative agreement
with the budget of the Reynolds shear stress (for which
production and pressure destruction dominate). The
ideal near-wall budget is, in the units of the figure:
production=1; diffusion =~ 3; destruction ~—4. Note
that it is not maintained far up into the layer at all;
correspondingly, v, does not follow its ideal log-layer
behavior (kyu.) far up either (Fig. 4). However this
does not prevent a log layer from forming.

I1.4 — Near-wall region, finite Reynolds number

In the buffer layer and viscous sublayer, additional
notation is needed. Besides the wall units, y* and so
on, we introduce  which will equal v, except in the
viscous region. We also use X, which is in analogy
with Mellor and Herring’s notation [20], because from
the wall to the log layer we have y = sy™.

We follow Baldwin and Barth [9] in choosing a
transported quantity 7 which behaves linearly near the
wall. This is beneficial for numerical solutions: 7 is
actually easier to resolve than U itself, in contrast with
€, for instance. Therefore, the model will not require a
finer grid than an algebraic model would. To arrive at
this behavior we consider the classical law of the wall
and devise near-wall “damping functions™ that are
compatible with known results. These functions are
distinct from the f,, near-wall non-viscous destruction
term.

The eddy viscosity »; equals xyu. in the log layer,

but not in the buffer layer and viscous sublayer. We
define 7 so that it equals syu, all the way to the
wall. This leads to

3
X

fa= g ™
The subscript v stands for “viscous”. The fy,;
function is borrowed from Mellor and Herring, except
that we prefer the value ¢,;=7.1 to their 6.9, which
we believe yields a low intercept for the log law. Note
that there is no basis for (7) to apply at the edge of the
turbulent region, where  is also of order 1 and smaller.
However, the eddy viscosity has little influence there,

because of the absence of steep gradients.
The production term also needs attention. In it S is

replaced with S, given by

I = i}fvla

g X

B ]-+va1.

The function f,s is constructed, just like f,1, so that
S maintains its log-layer behavior (S = u./(ky)) all
the way to the wall. Equations (4-9) were derived by
requiring the model to admit the law of the wall as

(8

v
S+Wf”2’ fue=1
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a solution, and then eliminating ur from any of the
formulas, in order for the model to be local. S is
singular at the wall, but 7 is zero there, so that the
production is well-behaved. Other quantities involved
in the “inviscid” model are redefined in terms of
instead of 14, for instance r = /(S &% d?).

We finally add a viscous diffusion term, consistent
with a Dirichlet boundary condition at the wall, 7 = 0.
This term too is based on an analogy, rather than a
rigorous equation, and we pay little attention to a
factor o multiplying it. It vanishes in the ideal near-
wall solution, since 7 is linear. The transport equation
has become

Do .
E = Cp1 St

1 Ak
2 VA4 5) V9 a2 (V)] — cun fu [3] e
This equation now yields equilibrium (D7 /Dt = 0)

all the way to d=0 in a classical law-of-the-wall
situation. Furthermore, the evidence shows that this
classical solution is a stable solution of the system
made of the momentum equation and Eq. (9), as it
has been obtained starting with a wide range of initial
conditions. This includes the results of figures 4 and 5;
in particular figure 5 displays the viscous and buffer
layers.

II.5 - Laminar region and trip term

1I.5.1 — Overview

The final set of terms provides control over the
laminar regions of the shear layers, which has two
aspects: keeping the flow laminar where desired,
and obtaining transition where desired. Codes with
algebraic models usually have crude “off-on” devices
or short ramps based on the grid index along the wall,
and the Baldwin-Barth model has also been used that
way (either by over-riding the model and setting the
eddy viscosity to zero in the momentum equation, or
by suppressing its production term). These devices do
not help the convergence of the codes. In addition we
require a device that is useable on unstructured grids,
so a non-traditional approach is needed.

The boundary layer is “tripped”. We use this word
to mean that transition in the real flow is imposed by
an actual trip, or that it is natural but its locations
is known. On no account should the model be trusted
to predict the transition location. The responsibility of
choosing transition points rests with the user of this
turbulence model, whether through an educated guess
or a separate prediction method. This is true of all the
models we know.

We refer to fransition points in 2-D, and transition
lines in 3-D. Often each 2-D body has two transition
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points, but in some cases one of the boundary layers
remains laminar all the way to the trailing edge, or
to a sharp comner at which separation is unavoidable.
The separated shear layer, however, must be turbulent,
therefore a trip should be placed slightly upstream of
the corner. Similarly, in 3-D the trip line may take
widely different shapes. On an unswept wing it is
likely to extend across the span at some fraction of
the chord, but it could well be interrupted if part of the
wing is laminar. On a turbulent swept wing, a short
trip line wrapped around the leading edge near the
root normally makes the whole wing turbulent. The
propagation of the state of turbulence is qualitatively
correct, in relation to its propagation in the real flow.

The specification of transition puts a new burden
on the user; however, this burden has already been
recognized by perceptive users of algebraic models,
particularly when transitional separation bubbles are
involved. The user has merely lost the option of
ignoring transition and of running the case as “fully
turbulent”. He needs to ensure that the two trips
(assuming the simple 2-D situation) bracket the
stagnation point, which is not known exactly in
advance. One recourse is to insert extra trips farther
along the chord. We have verified that an already
turbulent boundary layer is hardly disturbed when
subjected to a further trip.

The following “turbulence index” is convenient to
detect transition near a wall:

1 or
Kur On

i, =

(10)

These quantities are readily available, with u, defined

as 4, = /¢|w| in 3-D. In the Baldwin-Barth model
the definition would be ¢, v (@ Ry /dn)/(ku.). This
index is close to 0 in a laminar region, and close to 1
in a turbulent region. It rises somewhat over 1 when
the turbulent boundary layer approaches separation,
at least in 2-D, revealing the upset of the near-wall
region. The rapid diagnostic using i, should be made
routinely, and is particularly relevant if a calculation
is thought to produce premature separation. It may
be that the model failed to transition, or that laminar
separation is unexpectedly occurring upstream of the
trip. In either case the user must investigate the viscous
physics of the solution, just like in an experiment.

I.5.2 — Laminar region

We described in § II,2. how 7 = 0 is an unstable
solution (going in the direction of D/Df) especially in
thin shear layers. In a boundary-layer code the zero
solution is easily maintained, but in a Navier-Stokes
code exactly-zero values are rarely preserved, so that
the model is “primed” by the streamwise diffusion
term and by numerical errors upstream of the trip. It
then transitions at a rate that depends on numerical
details and has little to do with the boundary layer’s
true propensity to transition, as controlled by pressure

1954, 0% 1

gradient, suction, etc. We verified this behavior, and
it is not acceptable.

A solution to this problem, which is purely
numerical, is to alter the production term so that 7 = 0
is a stable solution, with a small basin of attraction. We
take the convention that in the laminar region ¥ is less
than about v. If 7 < v, then v; < v/350 because of the
damping by f,1, and the flow is effectively laminar.
We multiply the production term by (1), where

fra = cus exp (—cua XP). (11)

The subscript ¢ stands for “trip”. In order for zero to
attract # down from values of about v/ /2, the following
values are fair: cg=1.2, ¢4 =0.5. In any case ¢35 must
be larger than 1. As for cy, it can be decreased several-
fold, if a code still yields premature transition. The
cross-over point of (1), (i.e., the bound of the basin
of attraction), is at x = /log (c3)/ces. The value
¢4 =0.5 was small enough in our code, but no other
users have exercised the trip term so far. Values of ¢y
much smaller than 1 would start affecting the results
in the turbulent region.

The values of ¢z and ¢, are the only ones that differ
between the model as first published [22] and here.
We discovered that the original values (i.e., ¢5=1.1,
¢4 =2) allowed premature transition in some of our
cases. These cases had trips close to the leading edge,
so the effect on the results was unnoticeable. The new
values are safer, especially at high Reynolds numbers,
and make essentially no difference once the flow is
turbulent.

In order to still balance the budget near the wall
we offset the change in the production term with an
opposite change in the destruction term, involving f,
[see Eq. (12) below]. Again we take an empirical
approach, and have numerical evidence that it yields
a stable system. A user that is doing boundarv-laver
calculations can leave the f;, term out (i.e., set ¢ =0).

1.5.3 — Trip term

We wish to initiate transition near the specified
trip points in a smooth manner, and to retain a local
formulation. For this a source term is added that will
be nonzero only in a small domain of influence. This
domain should not extend outside the boundary layer.
Not wanting to find this edge, nor violate invariance
principles, we invoke the quantities AU and w,. AU is
the norm of the difference between the velocity at the
trip (i.e., usually zero since the wall is not moving)
and that at the field point we are considering. w; is
the vorticity at the wall at the trip point. Upstream of
the trip in a boundary-layer code, it is fair to take w at
the wall at the current station, since w; proper is not
available yet. The thickness of the boundary layer is
on the order of«[e4e./w;. Recall that it is still laminar.
We also introduce d;, the distance from the field point
to the closest trip point or line.
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Dimensional analysis points to AU? as a starting
point for the source term, and we arrive at

Di -
jj =cp1 [1 = fio] ST
+2 V(v +9) V9) + 0 (V9]
~72
— [cut fo = 25 £a] H +fa AU?, (12)
5 d
with

2
W

fa = ca ge exp (—Ctz NEAIRR dfl).. (13)

and g; = min (0.1, AU /w; Az;), where Ax, is the grid
spacing along the wall at the trip. The Gaussian in f;;
confines the domain of influence of the trip terms as
needed; it is roughly a semi-ellipse. The magnitude
is adjusted so that the integrated contribution for a
particle crossing the domain of influence is on the
order of Ueggd, as is ensured by typical algebraic
models. The odd factor g, is passive (i.e., g;=0.1)in a
situation with a very fine grid, but is quite active and
necessary in practice. Without the grid dependence
of g, the streamwise domain of influence of the trip
would scale with the boundary-layer thickness, which
can be very small in the laminar region. As a result,
that domain would easily fall between two streamwise
grid points, so that the trip would not be not felt at all.

The g, factor guarantees that the trip term is nonzero:

over a few streamwise stations. Like the f; term, the
g, factor is needed only for numerical reasons.

The value ¢, =2 reflects typical values of dw;/Ueqge
in laminar boundary layers and is not a candidate for
much adjustment. Tests indicate a wide range for ¢y
between values so low that transition miscarries, and
values so high that 7 and the skin-friction overshoot.
The value ¢,; =1 is well within that range; successful
transition was obtained with 0.1 and with 10. It is
possible that at very low Reynolds numbers ¢,; would
require more attention.

The growth of & to nonlinear levels under the effect
of the production term occurs in a few boundary-layer
thicknesses (c;; being roughly 0.13). This behavior
mimics the secondary instabilities invoked by recent
transition theories, which have growth rates on the
order of 1/8. However since the streamwise grid
is often much coarser than 8, transition will still
appear very steep to that grid. Thus, we have a
formal advantage over the “off-on” models in that
transition is a smooth process, but in practice this is
marginal. Naturally, an adaptive grid will focus points
at transition, and approach the ideal situation.

Figure 7 summaries § II,5. It shows the turbulence
index i, and the skin-friction coefficient (based on
U.) near the leading edge on an airfoil for three
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calculations. The first two have c5 =0, which gives no
precaution to avoid spurious transition, and no trip.
They have different freestream values, Yoo = 1072
and 107, respectively. The index i, is seen to rise
gradually starting close to the stagnation point, at
x/c=0.0016, leading to transition at x/c = 0.0060 and
x = 0.0075, respectively. Thus, transition is controlled
by the highly arbitrary freestream value of ©. In
addition, “spontaneous” transition is occurring in a
strong favorable pressure gradient, which is unphysical
in a 2-D flow. The third calculation uses the complete
model and a trip at x/c=0.03. Initially, i, decays as a
result of the negative production term. Near x/c=0.027
the trip terms becomes active, and the turbulence
index jumps to 1, because it reflects only the near-
wall region, which has a short length scale (on the
order of v/u. ). The skin-friction coefficient rises more
slowly, as a result of the larger length scale of the
boundary layer as a whole (on the order of 8). Often
the skin friction slightly overshoots that of the already-
turbulent cases, which is qualitatively correct; farther
downstream all the skin-friction curves converge.
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Fig. 7. — Transition in a boundary layer. [J, fully turbulent, y.o =
1072; ¢, fully turbulent, oo = 107%; x, trip at x/c=0.03. —, iy
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Figure 7 shows that, with transport models, “fully
turbulent” solutions actually conceal a laminar stretch
of boundary layer of unpredictable length, although
usually much shorter than would result from natural
transition. In contrast, algebraic models are truly
activated from the stagnation point on. The “fully
turbulent” solutions may be satisfactory for simple
cases, especially if the experiment used trips close to
the leading edge (precisely to eliminate the influence
of transition). The careful calculation of more complex
cases, especially involving natural transition, requires
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a full awareness of the state of the turbulence model,
as provided by the i, index.

I1.6 — Initial and freestream conditions

Fair results have been obtained by initially setting
7 uniformly to its freestream value. The turbulent
viscosity emanates at the trips and spreads without
noticeably degrading the convergence of the code. In
the freestream the ideal value is zero. Some solvers
may have trouble with this, for instance because of
round-off errors. Freestream values 7, < v/2 are
easily tolerable with the current ¢, and ¢y constants,
and do not damage the laminar regions.

I - RESULTS

ITI.1 - Boundary-layer calculations

With zero pressure gradient, the model obeys the ac-
cepted Reynolds-number scaling, so the results shown
at Ry=10* ensure agreement with the theories. The
model gives satisfactory results in attached boundary
layers with pressure gradients, typical of the Stanford
1968 cases. We only present results for the sink flow
and the Samuel-Joubert flow [21] as the other cases

with moderate gradients show the same trend.

In the sink flow, with acceleration parameter
K =v/U? ge (@UVedge/dz) = 1.5 x 107°, we obtain
Cr=0.00535, H=1.35, and Ry=760. These results
are well within the experimental range, which is

about C; € [0.0050, 0.0057], H € [1.35, 1.42], and

Ry € [700, 800]. The eddy-viscosity profile is atypical.

Because of the lack of entrainment in the sink flow,
it does not show a front at the edge of the boundary
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layer. Instead, it extends into the freestream region.
This does not disturb the velocity profile, which is
satisfactory both in terms of thickness and shape.

In the Samuel-Joubert flow the agreement is rather
good for the skin friction, figure 8, and the thickness,
figure 9. The shape factors, however, are in mild
disagreement even before the pressure gradient is
applied. The experimental values for x between 1
and 2m, H =~ 1.39, are surprisingly high, considering
the weak pressure gradient and the Reynolds number,
Ry = 6,500. Interestingly, the calculated shape factor
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is catching up with the experimental one for x>3m.
Figure 10 shows the velocity at x=3.4 m. The position
of the boundary-layer edge is good, but the computed
profile is fuller than the experimental profile. The
shear-stress profiles in figure 11 show good agreement
for the outer values, but the near-wall agreement may
be poor enough to partly explain the differences in
the velocity profiles.

The Samuel-Joubert results suggest a mild tendency
to underpredict the shape factor and thickness in
adverse pressure gradients. This may make the model
a little more resilient to separation than it would
ideally be. The tendency is not as strong as with
the Cebeci-Smith, Baldwin-Lomax, and k-e€ models,
but our comparison with experiment is not quite as
good as that obtained by Menter with the Johnson-
King and k-w models [10]. Both of these models have
been finely tuned over years, with an emphasis on
precisely this type of flow.
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Fig. 11. — Shear-stress profile at x=3.39 m in Samuel-Joubert
flow. T normalized with edge velocity. y in meters.

II1.2 — Navier-Stokes calculations

We have developed a numerical procedure for
solution of the turbulence transport model within
a Navier-Stokes solver [22]. The solver for the
turbulence model uses implicit time-marching, and
discretizes advection terms by first-order upwinding
and diffusion terms by second-order centered differ-
encing. The implicit system is constructed and solved,
using ADI with subiterations, to ensure a positive eddy
viscosity at all points during the iteration procedure.
The scheme is also unconditionally stable. We present
three cases of the RAE 2822 airfoil; the first two have a
sharp trailing edge with shock interactions of different
strengths, and the third has a blunt trailing edge.

P. R. Spalart and S. R. Allmaras

Navier-Stokes calculations for cases 6 and 10 on
the RAE 2822 airfoil [23] were performed using the
present model as well as the Baldwin-Lomax model, in
Martinelli and Jameson's code [24], and the Johnson-
King model in Swanson’s code [25]. Results for each
model were computed on 384 x 80 and 768 x 160 grids
to exhibit numerical errors. These grids were generated
by the elliptic method of Wigton [26].

All calculations for case 6 were performed at
the same conditions: M=0.725, Re=6.5x 10° a
prescribed lift coefficient of C;=0.743, and transition
trips at 3% chord. Results on the 768 x 160 grid are
shown. All models converged solidly on both grids.

Figure 12 shows a comparison of surface pressures
for case 6 obtained with the three turbulence models
and experiment [23]. The shock for the present model
is about 1.5% chord farther forward than in the
experiment or as predicted with the other two models,
but well within the scatter of various models as
reported at the Viscous Transonic Airfoil Workshop
(VTAW) [7]. The new model is farther from the
experiment near the leading edge on the upper surface,
but closer near the trailing edge on the lower surface.
All the calculations reveal small pressure glitches near
the trailing edge. With the new model on the fine
grid, the angle of attack is 2.37°, the drag coefficient
0.0121, and the moment coefficient —0.091, compared
with 2.92°, 0.0127, and -0.095 in the experiment,
respectively. '
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Fig. 12. — Pressure distribution for Case 6, RAE 2822 airfoil.

Figure 13 shows the upper-surface skin-friction
coefficient for the same case. Between the three
models there,is a difference of up to 10% upstream
of the shock, and similar but reversed differences
downstream of it. The new model does not predict
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wall-shear reversal at the foot of the shock. The
other two predict reversal, but only on the finest
grid (768 x 160). Reversal was never predicted at the
VTAW, where the finest grid used was 369 x 65. At the
shock, the new model produces a larger step up for the
boundary-layer thicknesses than with Baldwin-Lomax,
resulting in a more forward position. Interestingly, the

size of the displacement effect is not correlated with .

the occurence of reversal at the wall.

Flow conditions for the RAE 2822 Case 10 are
M=0.75, Re=6.5 x 10°, a prescribed lift coefficient
of C;=0.743, and trips at 3% chord. The new model
obtained a steady solution on the 384 x 80 grid, but
produced a limit cycle on the 768 x 160 grid. All
the cyclic variation was in the separation bubble. The
new model also produced a limit cycle on the 384 x 80
grid when the artificial dissipation in the Navier-Stokes
solver was cut in half. The other two models produced
steady solutions on both grids. Results are presented
for all three models on the 384 x 80 grid.

As usual, Case 10 produces larger differences than
Case 6. With our policy of matching the Mach number
and lift coefficient, the new model gives a better
answer than Baldwin-Lomax and slightly better than
Johnson-King (Fig. /4). This is in terms of shock
location and of pressures near the leading edge, for
the upper surface, and near the trailing edge, for
the lower surface. Our policy of matching the lift
coefficient is not the only one possible, but it is
very defendable, and was not chosen to enhance
the new model’s results. The differences in shock
position would be essentially the same if the angle of
attack were prescribed instead. All the models fail to
agree with experiment for x/c> 0.6, upper surface. The
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Fig. 14. — Pressure distribution for Case 10, RAE 2822 airfoil.

new model predicts a flattening pressure for x/c>0.9,
upper surface, in qualitative disagreement with the
experiment. The Johnson-King model has shown the
same trend, but not as strongly and only in Coakley’s
implementation [7]. The Baldwin-Barth model also
produces the flattening [9].

This behavior of the C, may be correlated with that
of the skin-friction coefficient, figure 15. Downstream
of the shock, the experiment and our Johnson-King
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results show the skin friction returning to strong
positive values. The flow reattaches firmly. The
Baldwin-Lomax results show weakly positive skin
friction over a short stretch. With the new model
the skin friction grazes zero before again taking small
negative values. The limit cycle behavior on the fine
grid shows an oscillation between slightly negative and
slightly positive skin friction near x/c=0.8. For Case
10, with the new model on the 384 x 80 grid, the angle
of attack was 2.52°, the drag coefficient 0.0238, and
the moment coefficient —0.104, compared with 3.19°,
0.0242, and —0.106 in the experiment, respectively.

The blunt-trailing-edge airfoil is RAE 2822,
truncated at 94% of the original chord (base height
1.14% chord). Similar calculations were performed
by Stanaway, McCroskey and Kroo [6]. Our objective
is to explore the behavior of the model and of the
numerics at corner-induced separation, with high-lift
applications in mind. Accordingly we choose Case
1 [27] which is subcritical: M=0.676, Re=5.4 x 10°,
and lift coefficient C;=0.451. Calculations are
performed on medium and fine two-block grids. The
fine grid consists of a 768 x 160 C-grid block around
the airfoil and a 128 x 64 block downstream of
the blunt trailing edge. Strong convergence of the
iterations 1is obtained, and solution glitches are less
severe than with the sharp trailing edge. The angle
of attack is 2.035°, the drag coefficient 0.0097, and
the moment coefficient —0.061, compared with 2.45°,
0.0098, and —0.060 in the experiment, respectively.
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Figure 16. — Minimum velocity in wake for Case 1, blunt RAE 2822
airfoil. ¢} experiment, — 768 x 160 grid, — — — 384 x 80 grid.

F igure 16 shows the minimum velocity in the wake
which is in fair agreement with the experiment [27]. In
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Fig. 17. — Streamlines near the trailing
edge for Case 1, blunt RAE 2822 airfoil.

another example of slow grid convergence of the detail
features in the flow, the amplitude of the backflow
doubles between the 384 x 80 grid and the 768 x 160
grid. The region with negative velocities extends a
little over one base height (i.e., 1.35% on the fine grid)
beyond the trailing edge. The report on the experiment
also shows about 1.2 step heights, but the interpolation
is debatable in that the U=0 line is shown with an
apex, probably due to the understandable sparsity of
the measurements. The computed curve is shifted by
about 0.5% chord downstream; the slopes agree very
well. This suggests that the model not enly gives
an accurate growth rate for a fully-developed wake
(per its calibration), but is also fairly accurate for a
“young”, asymmetric one. The near wake of a wing,
which is combined with a mixing layer, is still a
different problem; nevertheless, we expect the model
should also be able to treat it well.
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Fig. 18. — Eddy-viscosity contours near the
trailing edge for Case 1, blunt RAE 2822 airfoil.
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Figure 17 shows streamlines (but not equally-spaced
stream-function contours). Their pattern is unexpected,
being rather asymmetric and indicating “reattachment”
of an upper-surface streamline near the mid-point of
the base. There are three half-saddles, one saddle,
and two foci. This was also obtained by Stanaway
et al. and sharply differs from the “educated guess”
made, for instance, in [28]. That guess assumes that
the streamlines connected to the three half-saddles
meet at the full saddle, isolating the two foci. There
is no reason for such a pattern to occur in the absence
of symmetry, and it is not stable. The saddle and
the lower focus could also eliminate each other under
other conditions. In fact a referee pointed out that
such an elimination had occurred as the grid was
refined in his Navier-Stokes calculation. We certainly
cannot rule out such a grid effect in view of our
figure 16. A single-focus pattern was also indicated by
the referee’s experiments, adding much weight to his
remark. Note that the more surprising feature, namely
the reattachment of the upper-surface streamline on the
base, is present in any case. Note also that streamline
patterns can overstate the importance of regions with
low velocity and little dynamical significance.

Figure 18 shows eddy-viscosity contours. Conti-
nuity between the grid blocks, which is hard to
achieve with algebraic models, is of course observed.
The eddy viscosity blends its boundary-layer behavior
(as in Fig. 4) into its wake behavior (a bell-shaped
distribution).

IT1.3 - Summary of the results

We have exercised the model outside its domain’

of calibration and with the Navier-Stokes equations,
instead of just the boundary-layer equations. Its
compatibility with unstructured grids has now
been exploited by Anderson and Bonhaus [29]. Its
implementation in three dimensions is fully defined,
as confirmed by Rumsey and Vatsa [30]. In a few
cases with shock-induced separation the new model
yielded a limit cycle, with a pulsation of the bubble,
when the algebraic models yielded steady solutions.
Since time-accurate solutions are expensive, steady
solutions may be greeted as successes whether they
are physically correct or not [22]. The model seems to
be quite “friendly” to the relaxation process, without
any attention being paid to the initial condition [6].
Difficulties have been reported along the wake cut
in a C-grid code that usually runs with zero eddy
viscosity, given by a crude algebraic model, on the
grid cut (K. Kusunose, personal communication). The
present model does not have this unphysical behavior,
and in that code the combination of very fine grid
and finite eddy viscosity prevents convergence. The
situation improves if the normal grid spacing along the
grid cut is loosened. Overall, the model appears robust
enough to be implemented by independent users, in a
variety of codes and physical situations, and it should
be particularly attractive to unstructured-grid users.

1994, n® 1

The accuracy so far is consistent with our
expectations. The model’s response to gradual or steep
pressure gradients, and to the removal of the blocking
effect of the wall, is very encouraging. The post-
shock reattachment in an adverse pressure gradient
has proven to be difficult for the model. Menter
also reported somewhat disappointing results over a
backward-facing step, traced to an excessively-rapid
build-up of the shear stress (personal communication).
This weakness also afflicts the k-e model, and may
respond to a modification of the 4 and f, functions
and to a streamline-curvature term. The quality of
our results with the blunt trailing edge indicate that
this problem cannot be very severe. It appears that
the calibration cases are indeed representative enough
of the flows of interest to ensure decent performance
in non-trivial situations, and to warrant an extensive
validation of the model in its present form.
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APPENDIX: SUMMARY OF THE MODEL. VERSION Ia

We solve the Reynolds-averaged Navier-Stokes
equations and a transport equation for the turbulence
model. The Reynolds stresses are given by —u; @; =
2v; S;;. The eddy viscosity v, is given by

XS

X3+Cil,

il

ool

v = v fvls fvl — X (Al)

v is the molecular viscosity. © obeys the transport
equation

Dy

Dr — fi2] 8

=Ch1

[
é [V.((v + 7) V) + coa (V)]

2
- [ewr fum 2 ] H +fu AU (A2)

Here

X

—— (A3
1+Xf1:1 ( )

‘§ E f'u21

2d2 fv2:1_

where S is the magnitude of the vorticity, and d is the
distance to the closest wall.

The function f,, is

o= [ 1+c8, ]
Stchs (Ad)
T

g_:r+cw2(r -7),

Sﬁ.z d?

For large r, f,, reaches a constant, so large values
of r can be tr_l:lncated to 10 or so.

The wall boundary condition is # = 0. In the
freestream 0 is best, provided numerical errors do
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not push 7 to negative values near the edge of the
boundary layer (the exact solution cannot go negative).
Values below v/10 will be acceptable. The same
applies to the initial condition.

In some codes a portion of the solid surface,
typically the fuselage, is treated with a free-slip
condition while another portion, typically the wing, is
treated with a no-slip condition. For 7, the appropriate
condition on the free-slip surface is a Neumann
condition (zero normal derivative). In addition, the
free-slip wall points are not included in the search
when d is computed for the field points.

The f, function is
fi2 = ci3 exp (—cea X°)- (AS)
The trip function f;; is as follows: d, is the distance

from the field point to the trip, which is on a wall, w; is
the wall vorticity at the trip, and AU is the difference

between the velocity at the field point and that at the
trip. Then g; = min (0.1, AU v; Az;))where Ax, is
the grid spacing along the wall at the trip, and

w? ;
fi1 = cu1 g¢ exp (““Ct2 A[j-g [d2 +9tz df]) (A6)

The constants are c;; = 0.135;5) o = 2
Cpo = 0622 KR = 041} Cupl = cbl/ - (]_ + Cbg)
Cuz = 0.3: Cyz = 2, Cy1 = 7.1, C1l = 1, Cig = 2,
cis = 1.2, ¢, = 0.5 (note again that ¢3 and ¢4 are
different from those in Version I [22]). Turbulent heat
transfer obeys a turbulent Prandtl number (not to be
confused with o) equal to 0.9. In a compressible flow,
equations (A1-A6) have been applied directly. Density
variations have only a weak influence on turbulence
in the slightly supersonic boundary layers we have
treated so far.
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