

Turbulence Modeling: Roadblocks, and the Potential for Machine Learning NASA, July 2022

An Old-Fashioned Framework for Machine Learning in Turbulence Modeling

Philippe Spalart
Retired, NASA/Boeing

Outline

- Our aim is to provide guidance for Machine-Learning (ML) actors in modeling...
 - and also for "traditional" actors!
- We have the concept of "Turbulence Culture"
 - It takes many years to acquire
 - It mingles rigor and intuition, making it hard to teach
 - We have our controversies, and more than a few fallacies
 - Nobody reads the textbooks anymore
- We have concerns over the ~ 5 years of ML literature
 - No new "general purpose" model produced
 - No trace of ML at the Turbulence-Modeling Resource (TMR)!
 - Many papers accepted, but often the product is "not a model"
 - The correction is " $\beta(x, y)$ " and/or is very narrow-based
 - A hidden Neural Network was used
 - Invalid quantities are used, such as the mean velocity
 - More subtle flaws are common, such as a failure at the Edge of the Turbulent Region (ETR)
 - Rules are needed
- Creating and "planting" a new general-purpose model is a very large task
- A Paradigm Change is possible, of course...

Outline

- Our aim is to provide guidance for Machine-Learning (ML) actors in modeling...
 - and also for "traditional" actors!
- We have the concept of "Turbulence Culture"
 - It takes many years to acquire
 - It mingles rigor and intuition, making it hard to teach
 - We have our controversies, and more than a few fallacies
 - Nobody reads the textbooks anymore. Not even the SA paper!
- We have concerns over the ~ 5 years of ML literature
 - No new "general purpose" model produced
 - No trace of ML at the Turbulence-Modeling Resource (TMR)!
 - Many papers accepted, but often the product is "not a model"
 - The correction is " $\beta(x, y)$ " and/or is very narrow-based
 - A hidden Neural Network was used
 - Invalid quantities are used, such as the mean velocity
 - More subtle flaws are common, such as a failure at the Edge of the Turbulent Region (ETR)
 - Rules are needed
- Creating and "planting" a new general-purpose model is a very large task
- A Paradigm Change is possible, of course...

Turbulence Modeling Culture

- Turbulence defeats theory
 - We have a collection of facts, and good approximations
 - They accumulated over a century
- The Navier-Stokes equations describe turbulence
 - Direct Numerical Simulation would take infinite CPU power
- Reynolds-Averaging is correct, but...
 - The unsolvable Closure Problem stops "systematic development"
 - Algebra used to be blamed for lack of progress
- Simple empirical models are in service 24/7
 - Each was set by hand using a very small number of Turbulence Facts
 - They have a very small number of adjustable constants
 - Their one area of clear success is the simple boundary layer
 - It is crucial to understand the intent of each term
 - People propose to me "making the car faster in a straight line by fitting bigger brakes"
- We now have Big Data, "billions of turbulence facts" for ML to exploit
 - But not billions of constants
- Below, we list "hard" and "soft" constraints on a model

Turbulence Modeling Culture

- The community needs a model that "tries to do everything"
 - Call this "Universal" or "General," although very far from perfect
 - Specialized and "zonal" models are of limited value
 - Unless it is for "unusual needs," such as hypersonics
 - This is especially true if we expect a breakthrough from large Machine-Learning efforts
- The model needs to be fully described in the paper
 - PDE's, wall and freestream boundary conditions
 - This is a mild problem with for-profit CFD companies
 - Do not rely on a "hidden" Neural Network
 - There must be an easy way to obtain Fully Turbulent operation
 - Modern models need to be compatible with Hybrid RANS-LES Methods (HRLM)
- Grid-resolution needs must be reasonable and demonstrated
 - The operation count must be moderate
 - The damage to iterative convergence must be moderate; machine-zero convergence is expected
- In free shear flows, the molecular viscosity cannot appear
 - Kolmogorov energy cascade is from large eddies to viscous eddies
- You cannot ignore the simple boundary layer
 - The Karman Constant cannot be 0.6... or unknown!
 - The TBL controls viscous drag, and also separation, especially in HRLM mode

Universality? Generality?

- > "One model" is applied to numerous different flow modules in a single solution
- > Industrial practice is not zonal (meaning, having zones set by user)

At tip

Courtesy J. Slotnick and Airbus! Wall pressure and streamlines, field vorticity

Hard Constraints

- Turbulence is Galilean Invariant
 - The model must also be: do not use the velocity!
 - Very limited exceptions for very-near-wall physics
 - More subtle issues: streamline curvature and pressure gradient
 - Turbulence does not know a flow is "steady"
- The model must be independent of the direction of the axes
 - There is no such thing as "normal" and "shear" Reynolds Stresses
 - The statement "the normal stresses are equal" means nothing
- No numbers linked to "the flow" such as freestream velocity
- The model must give accurate skin friction in simple BL
- The model must be robust in ETR terms

Four Possible Reference Frames

Acceleration as Feature in a Turbulence Model: Invalid

- I have been on this since 1999 (with Speziale)
- The pressure gradient controls transition, separation...
 - What better quantity to introduce?
- The issue is unsteady flows
 - Stokes' Second Problem:
 - Boundary layer with oscillating (air mass wall) velocity difference $\Delta U = U_0 \cos(\omega t)$
- Use reference frame of air mass (a), or of the wall (b)
- The two flows have different acceleration and pressure gradients
- They have exactly the same turbulence!
- In Real Life, consider vortex shedding, blade passing, etc.
- The pressure gradient in steady flow is really the flux of vorticity across the wall, $\mu \partial \omega / \partial n$. This is valid
- This flux propagates upwards to create inflection points, and so on
- Unfortunately, it's not a local quantity

Courtesy St. Sato

GEKO "Generalized k-omega" Model of Menter

- In my opinion, this is a radical concept
- The formulas have not been published. It's coded only in ANSYS-Fluent
 - However, the concept is clearly explained
- The user has SIX adjustable parameters, now "field variables"
 - Goal is to have at the user's discretion a "single model" that spans the behavior of many models
 - Similar to "going from k-ε to SST," but even wider
 - Each parameter controls a particular effect, e.g., separation, jet width, or corner vortices (like having QCR on and off)
 - They can take different values in different regions
 - Notable application: thick wind-turbine airfoils
- Model is constrained to give the same flat-plate boundary layer with any setting
 - Boeing secret versions of SA satisfy exactly the same constraint!

The Edge of the Turbulent Region, or ETR (1)

- External flows have clean, inviscid, irrotational, non-turbulent fluid
 - The turbulent variables are essentially zero there
 - They must not influence the turbulent layers
 - $k-\omega$ and Baldwin-Barth fail this test, and are not used much
 - Wilcox in his 2006 edition did not really solve it
- A few actors have paid attention:
 - Menter, SA, Cazalbou, Kok, DLR, Abe
- At the core of this issue is the "Turbulent Ramp"
 - It must propagate slowly into the clean fluid
 - This region is dominated by the diffusion terms
 - The situation with slope discontinuities is not perfect, but is acceptable
 - Two-equation models also have excessive decay from the inflow values
 - Separate issue...

Turbulent Ramp of k- ε Model

Cazalbou, Spalart & Bradshaw

Exact Solutions of the Diffusion Terms Only

Spalart-Allmaras, $c_{b2} = 0.622$

Baldwin-Barth, $c_{b2} = -2$

These parabolas also work in cylindrical and spherical coordinates!

The Edge of the Turbulent Region, or ETR (2)

- The ETR problem in a model can be hidden by coarse grids
 - It normally prevents grid convergence, unless high ambient ("freestream") values are used
 - There are no guidelines to pick such values
 - There are ways to detect the problem:
 - Run case with different ambient values, all small, and run with very fine grids
- Solve the Ramp Problem analytically
 - Only the diffusion terms are needed
 - This involves non-trivial "weak solutions" to the PDEs, such as

$$k = k_0 H(ct - y) \left| \frac{ct - y}{\delta_0} \right|^{\sigma_k / (2\sigma_k - \sigma_{\epsilon})}$$

- confirmed by fine-grid numerical solutions
- The von-Karman length scale L_{VK} goes to 0 linearly at the ETR, and then, $1/L_{VK}$ is used...
 - Von Karman meant if for the near-wall region
- It is very unlikely that a data-driven approach can address this

Soft Constraints, Often Violated

- Do not use the wall distance
 - It is not in the exact equations
 - It is costly, and accuracy problems are easy to create
 - It is not fully smooth
- Avoid non-smooth functions such a min and max
 - These prevent high-order convergence
 - Same for singular boundary conditions, such as $O(1/y^2)$
- Produce a realizable stress tensor
 - This is "nice" but not crucial
- Avoid high derivatives
 - Problematic for finite-element solvers
- Allow exactly zero values
- Avoid non-smooth solutions, with slope jumps in v_t
 - No solution was ever found for SA, or any other model
- Respect the exact terms, such as the production of TKE
- Make turbulence die out in a mature vortex
 - Recent work with Garbaruk

Turbulence in a Mature Vortex?

- ➤ Govindaraju & Saffman 1971, Zeman 1995, Spalart & Garbaruk 2018
- ➤ Let an isolated 2D vortex become self-similar (it works for mixing layer)
- ➤ If it sustains turbulence, it creates a circulation overshoot!
 - ➤ i.e., opposite vorticity appears out of nowhere
 - > Origin is the conflict between conserving circulation and angular momentum
 - > G & S proved this rigorously, outside turbulence modeling (just self-similarity)

 \triangleright Guilty: SA92, SST92, k- ϵ , k- ω , EARSM

➤Innocent: SARC, SST-RC suppress the eddy viscosity

Turbulence in a Mature Vortex?

nan 1995, Spalart & Garbaruk 2018 self-similar (it works for mixing layer) a circulation overshoot!

now ving turb Airbus

RSIvi ss the eddy viscosity

Reflections on Machine Learning

- Avoid bombastic ("ronflant" in French) titles such as:
 - "Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework"
 - 100 years ago, Prandtl and Taylor knew a lot about the physics!
- Remember the "calling for universality"
- Remember a correction that is a function " $\beta(x,y)$ " in a single flow can be "instructive for a human modeler," but does not constitute a model
 - It is not clear how AI can choose which term to correct with β (e.g. production?)
- Writing that "a Neural Network was trained, and gave these results" does not give a model
 - The exception: Weatheritt & Sandberg. No NN, and specific PDE's from Genetic-Expression Programming
- The selection of the input quantities ("features") is the core challenge
 - $\frac{\partial U_i}{\partial x_j}$; S_{ij} versus Ω_{ij} ; invariants and powers of $\frac{\partial U_i}{\partial x_j}$; d; n_i ; $\frac{DS_{ij}}{Dt}$ (in RC and in Olsen's Lag models); etc.
 - It is not clear how AI can do this
- Will AI be the "architect," or only in charge of "subtasks?"
- The author has no promising ideas to offer
 - Politely giving his opinion on bad new ideas is not much fun