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Outline. Strategy for RANS model improvement

High-quality data base (exp., DNS/LES)

Empirical wall law for the mean velocity in an  APG

APG modification of RANS model



Reynolds number

Database and Parameter Space
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The classical view of the mean velocity profile of TBL in adverse pressure grad.

• Resilience of the log-law in APG 
• Law of the wake with an empirical relation for the wake factor П= f( βRC, … ), e.g. by Perry
• However: This has not been used for the modification of RANS turbulence models so far
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Alternative view of the mean velocity profile of TBL in adverse pressure grad.

• Resilience of the log-law in APG
• Half-power law above the log-law (Perry, Bell & Joubert)
• Attemps to use a pure half-power law to modify RANS models (Rao & Hassan 1998, Aupoix & Catris 2000) 
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Resilience of the log-law in the mean-velocity:
• Coles, Coles & Hirst (1968)
• Galbraith et al. (1977),
• Granville (1985), 
• Skare & Krogstad (1994)
• Alving & Fernholz (1995) 
• Spalart & Coleman (2010)
Half-power law above the log-law
• Perry, Bell & Joubert (1966)
• Kader & Yaglom (1978)
• Durbin & Belcher (1992)



Alternative view of the mean velocity profile of TBL in adverse pressure grad.

• Resilience of the log-law in APG
• Half-power law above the log-law (Perry, Bell & Joubert)
• Attemps to use a pure half-power law to modify RANS models (Rao & Hassan 1998, Aupoix & Catris 2000) 
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Slope of the half-power law depends on
• the local shear-stress gradient

Approximation by a local model
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Alternative view of the mean velocity profile of TBL in adverse pressure grad.

• Resilience of the log-law in APG
• Half-power law above the log-law (Perry, Bell & Joubert)
• Attemps to use a pure half-power law to modify RANS models (Rao & Hassan 1998, Aupoix & Catris 2000) 
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Conjecture of a local wall law: 
u+ is a function of y+ and local parameters

y+
log,max =f(Δps

+,δ+)

Database study to find a correlation



Calibration of the wall law
• Goal: Find an empirical correlation
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y+log,max =f(Δps+,δ+)

Re-effects
Motivated from self-
similarity analysis of the
boundary layer
equations (Hartree
parameter)
and by work for ZPG by
Wei & Klewicki

Towards
separation
(Stratford 
1959)

DLR/UniBw exp II 
(effects of
history/non-equil.)

y+log,max =1.78(Δps+)-0.2(δ+)1/2



Goal: Adjustment of dU / dy in the half-power law region
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• Analysis of the omega-equation in boundary-layer approximation (è see below)
• HGR01 airfoil at high Rec=25Mio, incidence angle α=10°



APG modification only in 
the half-power law region

Motivated using boundary layer
theory for the ω-equation

Goal: Adjustment of dU / dy in the half-power law region
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• Analysis of the omega-equation in boundary-layer approximation (è see below)
• HGR01 airfoil at high Rec=25Mio, incidence angle α=10°



Blending functions for sqrt-law modification

• Modifications should be activated only
in the half-power law region

P* motivated from analysis of
the BL eq. for omega

Inner blending given by y+log,max
• Depending on Δpx

+ and Reτ
Outer blending: y<0.2δ99
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Blending functions for sqrt-law modification

• Modifications should be activated only 
in parts of the boundary layer

HGR01 airfoil at Re=0.65Mio, α=12o

Dω,p /Pω

0.2δ99

y+sqrt,min
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P*



Data structure of wall-normal lines for Δpx
+

Surface point
Δps+ from dp/dx 
and uτ

δ99, δ*, θ, H12

Field point

• Extension of unstructured flow solver DLR TAU code
• Data structure for wall-normal lines
• Method to determine Δps =  ν/(ρuτ3) dp/ds = (dp/ds)+ ,δ99, δ*, θ, H12

Wall normal lines for HGR01 airfoil
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Data structure of wall-normal lines for Δpx
+

Surface point
Δps+ from dp/dx 
and uτ

δ99, δ*, θ, H12

Field point

• Extension of unstructured flow solver DLR TAU code (working also for 3D aircraft configuration in high-lift)
• Data structure for wall-normal lines
• Method to determine δ99, δ*, θ, H12

Wall normal lines for DLR F15 3-element airfoil
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• Transport equation for the mean velocity

• Transport equation for the Reynods stress tensor

• Transport equation for the dissipation rate ω

RANS model augmentation of the SSG/LRR-ω model
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• Transport equation for the mean velocity

• Transport equation for the Reynods stress tensor

• Transport equation for the dissipation rate ω

RANS model augmentation
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• Transport equation for the mean velocity

• Transport equation for the Reynods stress tensor

• Transport equation for the dissipation rate ω à ε = 0.09*k*ω (k : TKE)

RANS model augmentation

„Net effect“:
The sum of all 
modelled terms
determines
<ui‘uj‘> and
hence U 

DLR.de  •  Chart 17



• Transport equation for the mean velocity

• Transport equation for the Reynods stress tensor

• Transport equation for the dissipation rate ω à ε = 0.09*k*ω (k : TKE)

RANS model augmentation

The sum of all 
modelled terms
determines
<ui‘uj‘> and
hence U 
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Step 1: Boundary layer approximation

≠

Take into account only dominant terms and derivatives in wall-normal direction

Non-dimensionalize (= scale) the equation to inner viscous units
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≠

Step 2: Substitute of wall-law into the ω-equation
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≠

Following ideas by Rao & Hassan, 
Catris & Aupoix

Step 2: Substitute wall-law into the ω-eq. Part 2: Wall law assumptions:
o Half-power law à dU/dy
o Linear total shear stress à τ = 1 + λΔps+ y+

o Derived relations for νt and ω
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≠

≠

Step 2: Substitute wall-law into the ω-equation

≠

DLR.de  •  Chart 22



+ m+(y+,Δpx+) 

+ m+(y+,Δpx+) 

Step 3: Spatial discrepency term

Spatial model
discrepency
term m

This gives an analytical expression
for m as a function of y+ and the
pressure gradient parameter α=Δpx+
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+ m+(y+,Δpx+) 

+ m+(y+,Δpx+) 

Inverse modelling: If we add the model discrepency term m to the ω-equation, then
the assumed wall-law at APG solves the modified ω-equation

(Cf. T. Knopp, AIAA-paper 2016-0588)

Step 3: Spatial discrepency term
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Analytical solution of a BL problem
Is equivalent to field inversion by
numerical methods (see FI/ML 
approach by Duraisamy et al.)



• Step 4:  Express the discrepency term as a function of admissible mean flow and 
turbulence quantities

è Modification of the coefficient of the ω-production-term

Step 4: Functional discrepency term
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Activated in the half-power 
law region in an APG



DLR/UniBw turbulent boundary layer flow (moderately strong APG)

Large-scale 2D2C-PIV 9 cams

micro 2D2C PTV
3D3C PTV STB (shake the box)

APG focus
region
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RANS simulations for DLR/UniBw moderately strong APG flow exp.
DLR.de  •  Chart 27



RANS simulations for DLR/UniBw moderately strong APG flow exp.
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Δpx+ = dp+/dx+ = 0.017 at x=10.09m  
(case U=36m/s)



Δpx+ = dp+/dx+ = 0.0114 at x=9.944m  
(case U=36m/s)

RANS simulations for DLR/UniBw moderately strong APG flow exp.
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Sensor/blending function
è Protection of the log-law behaviour



RANS simulations for DLR/UniBw moderately strong APG flow exp.
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HGR01 airfoil.  Re = 0.65 M,   M=0.07
31

• Wind-tunnel measurement in MUB at ISM at TU Braunschweig
• Large-eddy simulation (LES) at AIA at RWTH Aachen 

α = 12 deg



NACA 4412 airfoil.  Re = 1.64 M,   M=0.085
32

• Wind-tunnel experiments
• Coles & Wadcock 1979 at Re=1.5Mio at CALCIT at CalTech

• Test-section of length only 3.0m at an airfoil chord length 0.9m
• Wadcock 1987 at Re=1.64Mio at NASA Ames

• Test-section of length 4.6m and cross-section 2.1m x 3.0m, airfoil chord length 0.9m
α = 12 deg



NACA 4412 airfoil.  Re = 4.2 M,   M=0.18
33

• Wind-tunnel experiments
• Hasting and Williams (1987), at Bedford  (too thick trip device?) α = 12 deg



CRM DPW 6/7.  M=0.85,  Re=5M,  α=2.5 deg
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Surface distribution Δps+

Definition of s used in Δps+

Cosine angle between U(y+=1) and 
U(y=0.1δ) Cp at η=0.727



Summary & conclusion
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Similarity of classical and DD/ML steps for the improvement of a RANS model

Optionally: Sensor/blending function for local activation / deactivation of augmentation term

Feature-Identification
- Statistical measures
- Theory

Method to determine the
discrepency term
• Numerically (FI/ML)
• Boundary layer approximation

Validation
Unit cases / Unit-interaction cases / Complex cases

Identification of a short-coming in the predictive accuracy
(Data and validation test-cases)

Identification of a term to be corrected in the turbulence equations

Data = Test-cases for
the improvement of a 
RANS model

„Iteratively

Parametrisation of the
discrepency term
- Numerically (FI/ML)
- Boundary layer approximation

è Data driven methods and classical methods are very similar, DD/ML offers mighty (numerical) tools

Internat. cooperations of
immeasurable value
DPW, HLPW, AVT, …



• Modification of the SSG/LRR-ω in APGs
• With APG modification: more susceptible to flow separation

• Classical approaches have always been data-driven, too.
• Classical and DD methods share so many needs (need for good data, well-defined cases for validation)
• They are/use complementary tools, which should work as friends
• Human researcher’s mind & experience and (ML) data-science tools are both needed for future progress

• Theory and data analysis are useful tools: 
è Reduction of a high-dimensional feature space

• First order parameters : (dP/ds)+, Reτ ;  higher order parameters : (d2P/ds2)+, history effects
è Avoids overfitting: 

èFocus on first order effects
• Identify and filter out wind-tunnel effects (human’s experience still needed) : This also avoids overfitting

èUsing data for similar flows from different experiments
• Analytical inversion of boundary layer equations : remedies the problem of ill-posedness of FI if only using surface data

• Use of blending functions to activate a RANS augmentation term only in the target region (here: half-power law region)
èpractical remedy (a single, composite model vs. a universal RANS turbulence model)
èNeed to identify and to protect fundamental flow conditions (è Work by Bernhard Eisfeld on Friday morning)

Summary, Conclusion, and General ThoughtsDLR.de  •  Chart 37



Thank you for your attention. 
Possibly time for a few questions…?
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Backup material
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Calibration of the wall law.   Theoretical support from Self-Similarity Analysis

• Ansatz of a Self-Similar Solution

• Bounday layer eqution fur U

• Self-similar solution if the following parameters are independent of streamwise position s

• From laminar case (Falkner-Skan equations):
Hartree parameter
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y+log,max ≈C(Δps+)-(δ+)1/2



Comparison with FI/ML

High-quality data base (exp., DNS/LES)

Empirical wall law for the mean velocity at APG

APG modification of RANS model

Consider a large database of „training data“
- Large parameter space of TBL in PG

• Reduction to 1D boundary layer equations
• Analytical field inversion possible (instead of numerical

solution of an optimization problem)
• Express the discrepency term as a function of admissible 

mean flow and turbulence quantities

Comparison of approach with FI/ML

• Idea: Reduce large-dimensional feature space
• First-order and higher-order local effects
• Equilibrium and non-equilibrium flows
• Effects of the wind-tunnel and measurement 

uncertainties
è Avoid overfitting (“Average/filter first, then fit”)
è Use data for similar flows from different experiments     

try to avoid fitting wind-tunnel effects



Calibration of a wall-law at APG

Slope coefficient of half-power law

Author K

Present (data base) 0.45±0.15

Townsend (1961) 0.48±0.03

Perry (1966) 0.48

Kader & Yaglom (1978) 0.45

Afzal (2008) 0.58

Mellor (1966) for data
of Stratford cf=0 flow

0.44
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