Improvement on the AMM model for
predicting wing-body juncture flows

Hiroyuki Abel, Taisuke Nambu?l, Yasuhiro Mizobuchit

and Philippe R. Spalart?

1. Japan Aerospace Exploration Agency

2. Boeing Commercial Airplanes (Retired)



Motivation

The k- model is widely used in engineering calculations, but
not in aeronautical flows

This reflects impaired predictions for TBLs with separation

In particular, we see a smaller separation bubble for k-¢
than for experiments and SA and SST

This issue would also be associated with the pressure-
gradient response of k-¢ in separated flows

Although SST (blended k-g/k-®) improves the prediction for
separated flows significantly, the motivation is to have a
single model (possibly using a QCR) instead of a blended one



A, AMM model (Abe-Mizobuchi-Matsuo 2019) (1/2)

Two-equation eddy viscosity model (low Re k-& model)

Eddy viscosity approximation
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AMM model (Abe-Mizobuchi-Matsuo 2019) (2/2)

Two-equation eddy viscosity model (low Re k-& model)
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Quadratic constitutive relation (QCR, improved from Spalart’s)
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Improvement of the outer edge behavior in a TBL

» Cazalbou-Spalart-Bradshaw (1994)’s mathematical analysis
* (CSB noted that a constraint

20, -1<o0,

is required for representing the outer edge of a TBL layer properly in a two-equation
k-epsilon model.

* Except for the below model 3) and the standard high Re k-epsilon model, the
condition “2c, -1 £ G.” is not satisfied in a low Re k-epsilon model.

* It had yet to become clear if the constraint “2c, -1 < .” affects the prediction of
low Re k-epsilon model significantly. This was examined for AMM.

» Diffusion coefficients for low Re k-epsilon

1) o=14 ,0.=14 (Abe-Konhon-Nagano1994)

2) o, =1.2/f, ,c. =1.3/f, (Nagano-Shimada 1995)

3) o, =1.2/f, ,c. = 1.4/f, (Abe-Jang-Leschziner 2003)

4) o,=14 ,o, =14 (AMM)
Note that f, and f, denote model functions so that 6, and &, in the works of 2) and 3)
are not constant but depend on distance from the wall. 5
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The propagation becomes faster with decreasing the magnitude of 26, - G, .




Modified AMM model
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* We have modified AMM model coefficients using the MED condition (denoted as
AMM-TBL), which can be used for calculating both internal and external flows.

* The resulting von Karman constant for AMM-TBL is constraint is k=0.39, which is
estimated by k2= c,C /2 ( C, - C.;) and is within the current k value.
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Modified AMM model and the prediction for

o, a pressure-induced separation bubble
DNS setup (Abe 2017 JFM) ~ Cfand Cp profiles
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AMM-TBL also improves the prediction for a separation bubble slightly 8




AMM-QCRcorner model

We consider the non-zero value of the mean streamwise vorticity in a corner flow
where the Reynolds stress anisotropy plays a crucial role (Bradshaw 1987).

In AMM-QCRcorner, a Q€ term is added to the original AMM-QCR, i.e.
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sploration Agency

mn"~ mn~"ij

k 1
o C3 ;Vt I:szng + Eanané‘z]:| Cl = 06, C2 = 0.2, C3 = _0.3

C4, C,, C5 have been determined using DNS data in the channel and square duct.

Distributions of the normalized mean streamwise vorticity in a square duct at Re,=1000
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(Pirozzoli et al. 2018 JFM)

The prediction of AMM-QCRcorner is better than that of AMM-QCR,
and agrees reasonably with the DNS data.
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Prediction of AMM-QCRcorner for NASA Juncture Flow

The side-of-body separation occurs near the

trailing edge of the wing near a wing-root junction.

* The experimental data : \

Kegerise and Neuhart (2019 NASA TM)
NASA TMR website

 Re based on crank chord : 2.4million

Rumsey et al. (AIAA paper 2019-0079)

location for sting mounting

e Mach number Ma: 0.189

e Attack of angle: a =5 (-2.5to 5 in the experiment)

(to clarify to what extent AMM-QCRcorner predicts a separation bubble)

* Grids (NASA TMR website) : Coarse (12,312,544) and MED (39,121,991)

 Solver : FaSTAR (Unstructured grid solver developed by JAXA)
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Modification for the eddy viscosity expression
in the AMM-QCRcorner model

For airfoil calculations, we modify the expression for v, by incorporating a parameter S?- 2
( representing the acceleration and deceleration of the mean flow ) into the turbulence time
scale T, using the augmented time scale procedure by Yoshizawa et al. (2006 PoF).
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C; distributions (color contour) and streamlines with the attack of angle o = 5

contours

In the trailing edge region where the APG is large, the modified v; expression improves
the large magnitude of v, and hence the size of the separation bubble. 11




Prediction of AMM-QCRcorner for NASA Juncture Flow
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C; distributions (color contour) and streamlines with the attack of angle o = 5 degs
MED grid

Bubble size Cp distributions
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The size of the separation bubble predicted by the AMM-QCRcorner model
agrees well with the experimental data.
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Prediction of AMM-QCRcorner for NASA CRM

Distribution of CP (wing body juncture)

Experiment (Oil flow)
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For the NASA CRM, the AMM-QCRcorner model also predicts a corner
separation bubble reasonably.
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Summary

> AMM model modification

The outer edge behavior in a TBL is repaired with the use of the CSB
mathematical analysis

The QCR for improving the prediction in a corner flow (AMM-
QCRcorner)

The eddy viscosity expression, by incorporating a parameter S>-Q? into
the turbulence time scale, for avoiding the large v, in the APG region

» Improvement on the AMM model

The outer edge behavior in a TBL and the prediction for a separation
bubble are improved by the modified AMM model

The AMM-QCRcorner model reproduces a strong secondary flow near a
corner with large mean streamwise vorticity

The corner separation predictions of AMM-QCRcorner for the NASA
Juncture Flow and NASA CRM compare well with experimental data
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