

Improvement on the AMM model for predicting wing-body juncture flows

Hiroyuki Abe¹, Taisuke Nambu¹, Yasuhiro Mizobuchi¹ and Philippe R. Spalart²

- 1. Japan Aerospace Exploration Agency
- 2. Boeing Commercial Airplanes (Retired)

Motivation

- The k- ϵ model is widely used in engineering calculations, but not in aeronautical flows
- This reflects impaired predictions for TBLs with separation
- In particular, we see a smaller separation bubble for $k-\epsilon$ than for experiments and SA and SST
- This issue would also be associated with the pressure-gradient response of k- ϵ in separated flows
- Although SST (blended $k-\epsilon/k-\omega$) improves the prediction for separated flows significantly, the motivation is to have a single model (possibly using a QCR) instead of a blended one

\longrightarrow AMM model (Abe-Mizobuchi-Matsuo 2019) (1/2)

Two-equation eddy viscosity model (low Re k- ε model)

Eddy viscosity approximation

$$\overline{u_i u_j} = \frac{2}{3} k \delta_{ij} - 2 v_t S_{ij} \qquad \left(S_{ij} \equiv \left(\overline{U}_{i,j} + \overline{U}_{j,i} \right) / 2 \right)$$

Representation of v_t

$$v_{t} = C_{u} f_{u} k^{2} / \varepsilon$$

k equation

$$\frac{\partial k}{\partial t} + \overline{U}_{j} \frac{\partial k}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left\{ \left(v + \frac{v_{t}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{j}} \right\} + P_{k} - \varepsilon$$

<u>ε equation</u>

$$\frac{\partial \varepsilon}{\partial t} + \overline{U}_{j} \frac{\partial \varepsilon}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left\{ \left(v + \frac{v_{t}}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_{j}} \right\} + \frac{\varepsilon}{k} \left(C_{\varepsilon 1} P_{k} - C_{\varepsilon 2} f_{\varepsilon} \varepsilon \right)$$

Model functions

$$f_{\mu} = \left\{1 - \exp\left(-\frac{R_{y}}{A}\right)\right\} \left[1 + \frac{5}{R_{t}^{3/4}} \exp\left\{-\left(\frac{R_{t}}{200}\right)^{2}\right\}\right] \qquad (A = 120) \qquad f_{\varepsilon} = \left\{1 - \exp\left(-\frac{R_{y}}{B}\right)\right\} \left[1 - \frac{2}{9} \exp\left\{-\left(\frac{R_{t}}{6}\right)^{2}\right\}\right] \qquad (B = 12)$$

Model coef.	C_{μ}	σ_{k}	σ_{ϵ}	$C_{arepsilon 1}$	$C_{\epsilon 2}$
AMM	0.09	1.4	1.4	1.5	1.9

AMM model (Abe-Mizobuchi-Matsuo 2019) (2/2)

Two-equation eddy viscosity model (low Re k- ε model)

<u>Limiter for v_t </u>

$$f_{\mu} = min(f_{\mu}, 10)$$

Realizability limiter

$$v_{t} = C_{\mu} f_{\mu} k T_{\mu}$$

$$T_{\mu} = \min \left(\frac{k}{\varepsilon}, \frac{1}{\sqrt{6}C_{\mu}S} \right) \qquad \left(S = \sqrt{S_{ij}S_{ij}}, S_{ij} = \frac{1}{2} \left(\frac{\partial \overline{U}_{i}}{\partial x_{j}} + \frac{\partial \overline{U}_{j}}{\partial x_{i}} \right) \right)$$

Quadratic constitutive relation (QCR, improved from Spalart's)

$$\begin{split} -\overline{u_{i}}\overline{u_{j}} &= -\frac{2}{3}k\delta_{ij} + 2v_{t}S_{ij} \\ &- C_{1}\frac{k}{\varepsilon}v_{t}\Big[\Omega_{ik}S_{jk} + \Omega_{jk}S_{ik}\Big] - C_{2}\frac{k}{\varepsilon}v_{t}\Big[S_{ik}S_{kj} - \frac{1}{3}S_{mn}S_{mn}\delta_{ij}\Big] \\ &\left[S_{ij} = \frac{1}{2}\Big(\frac{\partial\overline{U}_{i}}{\partial x_{j}} + \frac{\partial\overline{U}_{j}}{\partial x_{i}}\Big), \ \Omega_{ij} = \frac{1}{2}\Big(\frac{\partial\overline{U}_{i}}{\partial x_{j}} - \frac{\partial\overline{U}_{j}}{\partial x_{i}}\Big) \\ &C_{1} = C_{2} = 0.6 \ \end{split}$$

Improvement of the outer edge behavior in a TBL

- Cazalbou-Spalart-Bradshaw (1994)'s mathematical analysis
- CSB noted that a constraint

$$2\sigma_k - 1 \le \sigma_{\epsilon}$$

is required for representing the outer edge of a TBL layer properly in a two-equation k-epsilon model.

- Except for the below model 3) and the standard high Re k-epsilon model, the condition " $2\sigma_k$ -1 $\leq \sigma_\epsilon$ " is not satisfied in a low Re k-epsilon model.
- It had yet to become clear if the constraint " $2\sigma_k$ -1 $\leq \sigma_\epsilon$ " affects the prediction of low Re k-epsilon model significantly. This was examined for AMM.
- Diffusion coefficients for low Re k-epsilon
 - 1) $\sigma_k = 1.4$, $\sigma_e = 1.4$ (Abe-Konhon-Nagano1994)
 - 2) $\sigma_k = 1.2/f_t$, $\sigma_e = 1.3/f_{\epsilon}$ (Nagano-Shimada 1995)
 - 3) $\sigma_k = 1.2/f_t$, $\sigma_e = 1.4/f_s$ (Abe-Jang-Leschziner 2003)
 - 4) $\sigma_k = 1.4$, $\sigma_e = 1.4$ (AMM)

Note that f_t and f_ϵ denote model functions so that σ_k and σ_ϵ in the works of 2) and 3) are not constant but depend on distance from the wall.

1D inverted parabola analysis

➤ Initial profiles (t=0)

$$v_t = C_\mu \left(1 - x^2 \right)$$

$$k = 1 - x^2$$

$$\varepsilon = 1 - x^2$$

 \triangleright k and ϵ equations

$$\frac{\partial k}{\partial t} = \frac{\partial}{\partial x_j} \left\{ \left(\frac{v_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right\} - \varepsilon$$

$$\frac{\partial \varepsilon}{\partial t} = \frac{\partial}{\partial x_i} \left\{ \left(\frac{v_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_i} \right\} - C_{\varepsilon 2} \frac{\varepsilon^2}{k}$$

$$C_{\mu} = 0.09, \ C_{\varepsilon 2} = 1.5$$

	LR	MED	HR
$(\sigma_k, \sigma_\epsilon)$	(1.4, 1,4)	(1.1, 1.25)	(1.0, 1.4)
$2\sigma_{k}\text{-}\sigma_{\epsilon}$	1.4	0.95	0.6
CSB condition $2\sigma_k - \sigma_{\varepsilon} \le 1$	Not satisfied	satisfied	Satisfied

HR may not be applied to a low Re k-ε model

The propagation becomes faster with decreasing the magnitude of $2\sigma_k$ - σ_ϵ .

Modified AMM model

Model coef.	C_{μ}	σ_{k}	σ_{ϵ}	$C_{\epsilon 1}$	$C_{\epsilon 2}$
AMM	0.09	1.4	1.4	1.5	1.9
AMM-TBL	0.09	1.1	1.25	1.5	1.9

- We have modified AMM model coefficients using the MED condition (denoted as AMM-TBL), which can be used for calculating both internal and external flows.
- The resulting von Karman constant for AMM-TBL is constraint is κ =0.39, which is estimated by $\kappa^2 = \sigma_\epsilon C_u^{1/2}$ ($C_{\epsilon 2} C_{\epsilon 1}$) and is within the current κ value.

The outer edge behavior has been indeed improved!

Modified AMM model and the prediction for a pressure-induced separation bubble

AMM-TBL also improves the prediction for a separation bubble slightly

AMM-QCRcorner model

We consider the non-zero value of the mean streamwise vorticity in a corner flow where the Reynolds stress anisotropy plays a crucial role (Bradshaw 1987).

In AMM-QCR corner, a $\Omega\Omega$ term is added to the original AMM-QCR, i.e.

$$-\overline{u_{i}u_{j}} = -\frac{2}{3}k\delta_{ij} + 2v_{t}S_{ij} - C_{1}\frac{k}{\varepsilon}v_{t}\left[\Omega_{ik}S_{jk} + \Omega_{jk}S_{ik}\right] - C_{2}\frac{k}{\varepsilon}v_{t}\left[S_{ik}S_{kj} - \frac{1}{3}S_{mn}S_{mn}\delta_{ij}\right]$$

$$-C_{3}\frac{k}{\varepsilon}v_{t}\left[\Omega_{ik}\Omega_{kj} + \frac{1}{3}\Omega_{mn}\Omega_{mn}\delta_{ij}\right]$$

$$C_{1} = 0.6, C_{2} = 0.2, C_{3} = -0.3$$

C₁, C₂, C₃ have been determined using DNS data in the channel and square duct.

Distributions of the normalized mean streamwise vorticity in a square duct at Re_{τ} =1000

The prediction of AMM-QCRcorner is better than that of AMM-QCR, and agrees reasonably with the DNS data.

Prediction of AMM-QCRcorner for NASA Juncture Flow

The side-of-body separation occurs near the trailing edge of the wing near a wing-root junction.

- The experimental data :
 Kegerise and Neuhart (2019 NASA TM)
 NASA TMR website
- Re based on crank chord: 2.4million
- Mach number Ma: 0.189
- Attack of angle : α = 5 (-2.5 to 5 in the experiment) (to clarify to what extent AMM-QCRcorner predicts a separation bubble)
- Grids (NASA TMR website): Coarse (12,312,544) and MED (39,121,991)
- Solver: FaSTAR (Unstructured grid solver developed by JAXA)

Modification for the eddy viscosity expression in the AMM-QCRcorner model

For airfoil calculations, we modify the expression for v_t by incorporating a parameter S² - Ω ² representing the acceleration and deceleration of the mean flow) into the turbulence time scale T_u using the augmented time scale procedure by Yoshizawa et al. (2006 PoF).

$$v_{t} = \frac{C_{\mu} f_{\mu} k T_{\mu}}{\left(1 + C_{S\Omega} \left[\left(S_{ij}^{2} - \Omega_{ij}^{2} \right) \left(k / \varepsilon \right)^{2} \right]^{2} \right)^{1/2}} , T_{\mu} = \min \left(\frac{k}{\varepsilon}, \frac{0.6}{\sqrt{6}} \frac{1}{C_{\mu} S_{ij}^{2}} \right) \left(S_{ij} = \frac{1}{2} \left(\frac{\partial \overline{U}_{i}}{\partial x_{j}} + \frac{\partial \overline{U}_{j}}{\partial x_{i}} \right), \Omega_{ij} = \frac{1}{2} \left(\frac{\partial \overline{U}_{i}}{\partial x_{j}} - \frac{\partial \overline{U}_{j}}{\partial x_{i}} \right) \right) C_{\mu} = 0.09 \quad C_{S\Omega} = 1$$

 C_f distributions (color contour) and streamlines with the attack of angle α = 5 degs

In the trailing edge region where the APG is large, the modified v_t expression improves the large magnitude of v_t and hence the size of the separation bubble.

Prediction of AMM-QCRcorner for NASA Juncture Flow

 C_f distributions (color contour) and streamlines with the attack of angle α = 5 degs MED grid

Bubble size

	Length	Width
Expt	119mm	43mm
AMM-QCR _{corner}	127mm	50mm
AMM	173mm	71mm
SA-QCR2000	146mm	52mm

Cp distributions

The size of the separation bubble predicted by the AMM-QCRcorner model agrees well with the experimental data.

Prediction of AMM-QCRcorner for NASA CRM

JAXA APC III

- Re=2.26 x 10⁶
- Ma=0.847
- α =5.72 degs
- Number of grid points:
 N=9,006,808 (MED GRID)
- $T\mu = 0.08\%$
- $v_t/v=0.10$ (AMM)

For the NASA CRM, the AMM-QCRcorner model also predicts a corner separation bubble reasonably.

Summary

AMM model modification

- The outer edge behavior in a TBL is repaired with the use of the CSB mathematical analysis
- The QCR for improving the prediction in a corner flow (AMM-QCRcorner)
- The eddy viscosity expression, by incorporating a parameter S^2 - Ω^2 into the turbulence time scale, for avoiding the large v_t in the APG region

Improvement on the AMM model

- The outer edge behavior in a TBL and the prediction for a separation bubble are improved by the modified AMM model
- The AMM-QCRcorner model reproduces a strong secondary flow near a corner with large mean streamwise vorticity
- The corner separation predictions of AMM-QCRcorner for the NASA Juncture Flow and NASA CRM compare well with experimental data