

Review & Potential of Wray-Agarwal Family of Turbulence & Transition Models for RANS Simulations

Ramesh Agarwal

Mechanical Engineering and Material Science Department
Washington University in St. Louis

NASA 2022 Symposium for Turbulence Modeling

(in honor of Phillipe R. Spalart)

Wray-Agarwal (2017) Model

https://turbmodels.larc.nasa.gov/wray_agarwal.html

- One equation model derived from k- ω closure
- Switching function allows behavior like k- ε model in the far field and like k- ω model in the wall region
- WA 2018 wall-distance free version
- Has been tested on 70+, 2D and 3D cases by researchers in US,
 China, India, Japan, Italy, Finland, Singapore, Czech Republic etc.
- Has been extended to include QCR and to hybrid DES, DDES, and IDDES models
- Has been extended to compressible high speed flows, rough wall flows and to include the effects of rotation & curvature
- Has been implemented in OpenFOAM, FUN3D and in some individually developed codes.
- UDF and source code modules are available on Github. Slide

Wray-Agarwal (2017) Model

$$\frac{\partial R}{\partial t} + \frac{\partial u_{j}R}{\partial x_{j}}$$

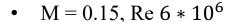
$$= \frac{\partial}{\partial x_{j}} \left[(\sigma_{R}R + \nu) \frac{\partial R}{\partial x_{j}} \right] + C_{1}RS + f_{1}C_{2k\omega} \frac{R}{S} \frac{\partial R}{\partial x_{j}} \frac{\partial S}{\partial x_{j}} - (1 - f_{1})min \left(C_{2k\varepsilon}R^{2} \left(\frac{\frac{\partial S}{\partial x_{j}} \frac{\partial S}{\partial x_{j}}}{S^{2}} \right), C_{m} \frac{\partial R}{\partial x_{j}} \frac{\partial R}{\partial x_{j}} \right)$$

$$= \frac{\partial}{\partial x_{j}} \left[(\sigma_{R}R + \nu) \frac{\partial R}{\partial x_{j}} \right] + C_{1}RS + f_{1}C_{2k\omega} \frac{R}{S} \frac{\partial R}{\partial x_{j}} \frac{\partial S}{\partial x_{j}} - (1 - f_{1})min \left(C_{2k\varepsilon}R^{2} \left(\frac{\frac{\partial S}{\partial x_{j}} \frac{\partial S}{\partial x_{j}}}{S^{2}} \right), C_{m} \frac{\partial R}{\partial x_{j}} \frac{\partial R}{\partial x_{j}} \right)$$

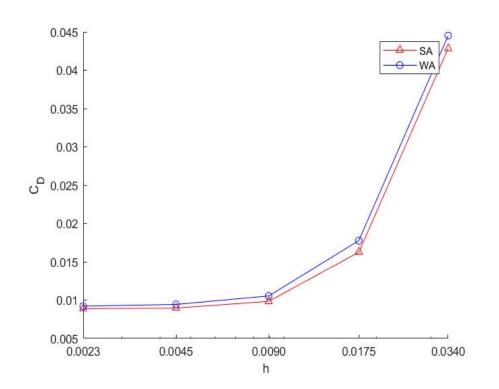
$$\mu_t = \rho f_{\mu} R$$
, $R = k/\omega$, switching function $f_1 = min(tanh(arg_1^4), 0.9)$

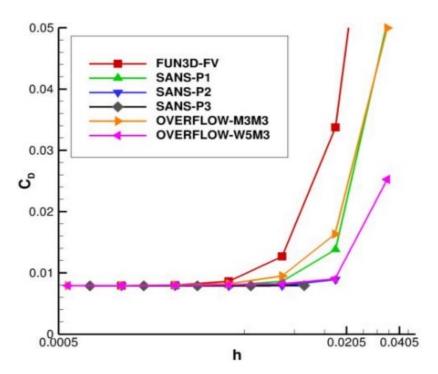
$$arg_1 = \frac{1 + \frac{d\sqrt{RS}}{\nu}}{1 + \left[\frac{max(d\sqrt{RS}, 1.5R)}{20\nu}\right]^2}$$

$$S = \sqrt{2S_{ij}S_{ij}}$$
, $S_{ij} = \frac{1}{2}\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$

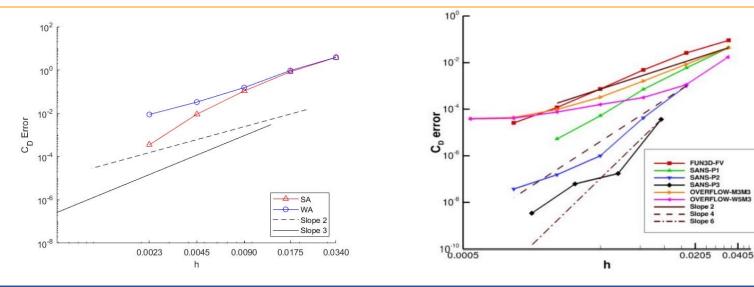

$$\begin{split} f_{\mu} &= \frac{\chi^3}{\chi^3 + C_w^3}, \quad \chi = \frac{R}{\nu} \\ C_{1k\omega} &= 0.0833 \quad C_{1k\varepsilon} = 0.1127 \\ C_1 &= f_1(C_{1k\omega} - C_{1k\varepsilon}) + C_{1k\varepsilon} \\ \sigma_{k\omega} &= 0.72 \quad \sigma_{k\varepsilon} = 1.0 \\ \sigma_R &= f_1(\sigma_{k\omega} - \sigma_{k\varepsilon}) + \sigma_{k\varepsilon} \\ \kappa &= 0.41 \\ C_{2k\omega} &= \frac{C_{1k\omega}}{\kappa^2} + \sigma_{k\omega} \quad C_{2k\varepsilon} = \frac{C_{1k\varepsilon}}{\kappa^2} + \sigma_{k\varepsilon} \\ C_w &= 8.54 \quad C_{\mu} = 0.09 \end{split}$$

HFW 2022 Joukowski Airfoil

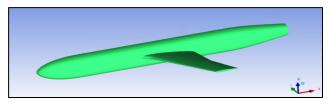



University in St. Louis
School of Engineering
& Applied Science

- M = 0.15, Re = $3 * 10^6$
- Incompressible RANS
- Green-Gauss Cell based second-order upwind
- Convergence of CD <10^-7
- Case based on guidelines for RANS SA-[neg]-QCR2000


- Compressible RANS
- SA-QCR-2000 model verification results AIAA 2021-1552 (Diskin et al.)

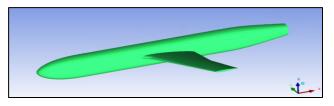
Joukowski Airfoil Convergence History



Grid	Model	Cl	Ср	Cv	Cd	Error	N	h
0	SA	-7.64E-08	0.035976	0.00687	0.042846	3.823005621	864	0.034021
1	SA	3.12E-08	0.009151	0.007096	0.016248	0.828948721	3264	0.017504
2	SA	-2.57E-08	0.002517	0.007325	0.009842	0.107887045	12480	0.008951
3	SA	-4.52E-09	0.00155	0.007414	0.008965	0.009099917	49536	0.004493
4	SA	-0.00032	0.00147	0.007417	0.008887	0.000347379	197376	0.002251
5	SA	4.66E-05	0.001438	0.007445	0.008884	0	787968	0.001127
0	WA	4.31E-09	0.036392	0.008131	0.044522	3.872621559		0.034021
1	WA	-6.18E-08	0.009489	0.008276	0.017764	0.94417569		0.017504
2	WA	-5.39E-09	0.002671	0.007875	0.010546	0.154191605		0.008951
3	WA	3.30E-10	0.001661	0.007777	0.009438	0.032969675		0.004493
4	WA	-1.96E-09	0.001509	0.007709	0.009218	0.00879792		0.002251
5	WA	4.79E-08	0.001477	0.00766	0.009137	0		0.001127

Meshes provided by Galbraith for Joukowski Airfoil (HFW 2022)

HFW 2022 Juncture Flow Model

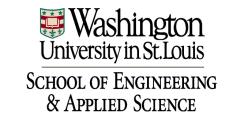

M = 0.189, $Re = 2.4*10^6$, $\alpha = -2.5^\circ$, 0° , 5° and 7.5° , 19 million cells

Experiment: AIAA 2019-0077

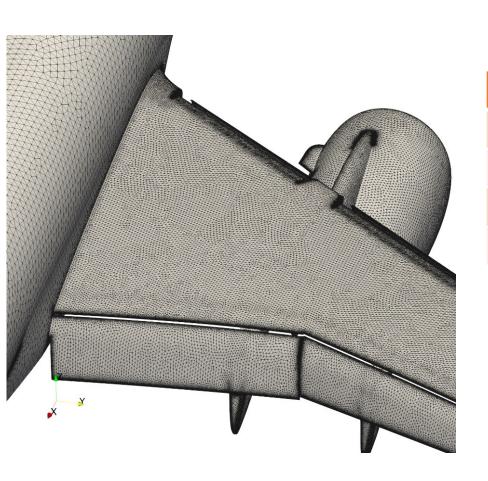
Lift and Drag at $\alpha = 5^{\circ}$

	Wray- Agarwal	Spalart- Allmaras	SA- QCR2000	k-w SST	k-w SST- QCR2000	High- Fidelity CFD Workshop
Drag Coefficient	0.0713	0.0693	0.0690	0.0697	0.0688	0.07
Lift Coefficient	0.831	0.854	0.0849	0.857	0.851	0.85

HFW 2022 Juncture Flow Model



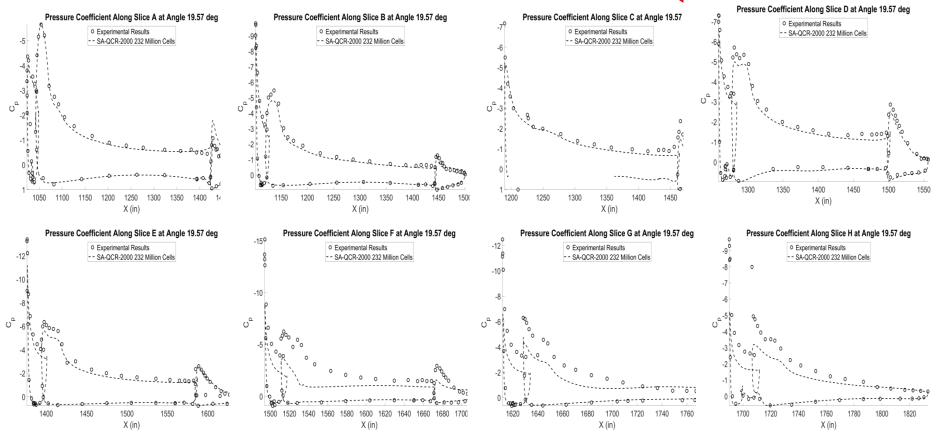
M = 0.189, $Re = 2.4*10^6$, $\alpha = -2.5^\circ$, 0° , 5° and 7.5° , 19 million cells


Separation Size Prediction

	Wray- Agarwal	Spalart- Allmaras	SA- QCR2000	k-w SST	k-w SST- QCR2000	Wind Tunnel
Length [mm]	247.7	242.5	157.06	231.0	155.50	110.6
Width [mm]	55.4	49.0	42.319	43.0	41.39	40.3

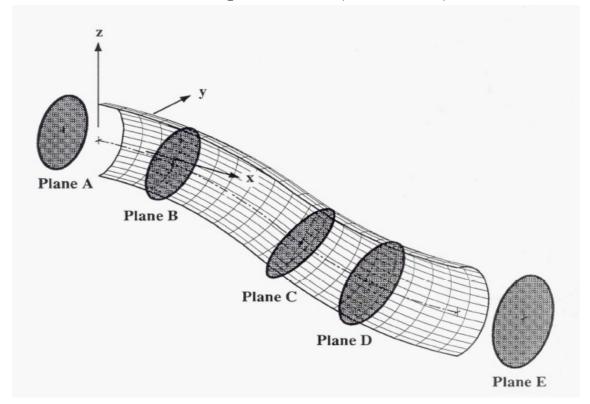
HLPW 4: NASA Common Research Model High-Lift (CRM-HL)

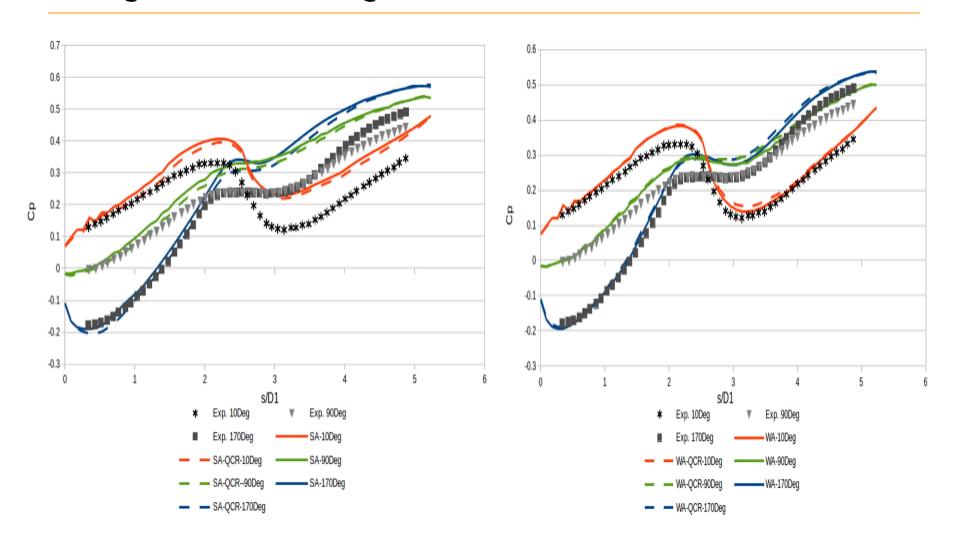
• M = 0.2, $Re_{MAC} = 5.49*10^6$, $\alpha = 19.47^\circ$, 232 million cells


19.47 deg	CD	CL
Experiment	0.362	2.515
SA	0.416	2.086
SA-QCR-2000	0.397	2.235
WA-QCR-2000	0.403	2.217

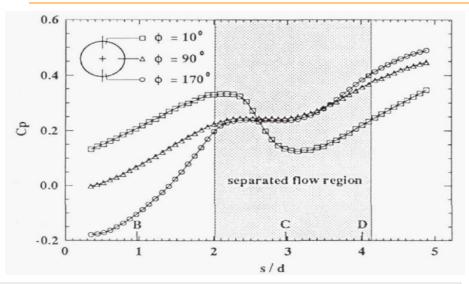
HLPW 4: NASA Common Research Model High-Lift (CRM-HL)

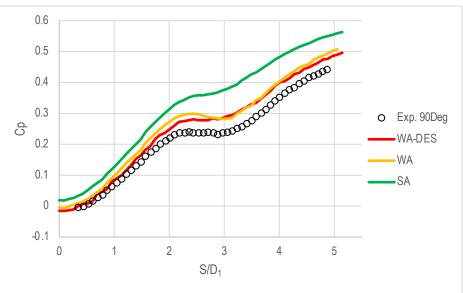
• M = 0.2, $Re_{MAC} = 5.49*10^6$, $\alpha = 19.47^\circ$

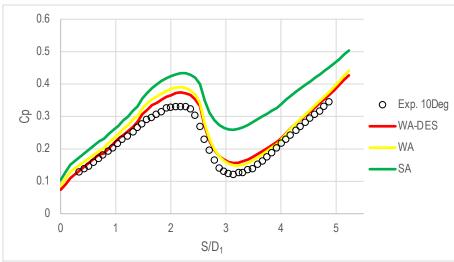

Pressure Coefficient SA/WA-QCR

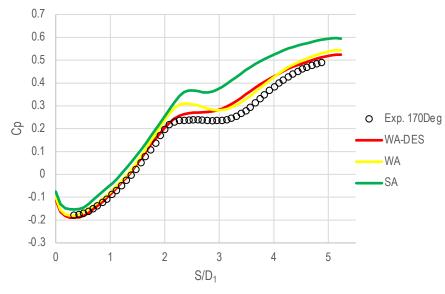

NASA Glenn S-Duct

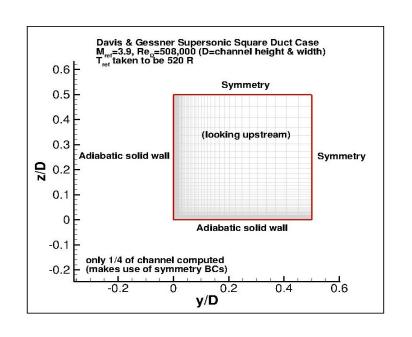
- M = 0.6, Re = 2,600,000 at $s/D_1 = -0.5$ (Plane A)
- The Aerodynamic Interface Plane (AIP), where the turbine face is located, is at $s/D_1 = 5.73$ (Plane E)

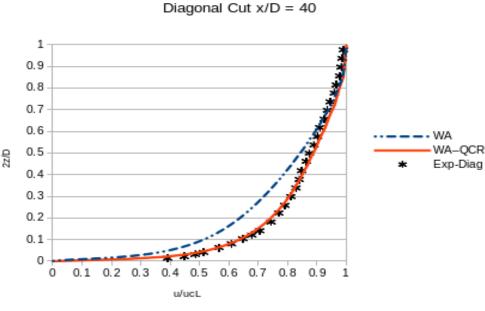

NASA Glenn S-Duct SA-QCR and WA-QCR

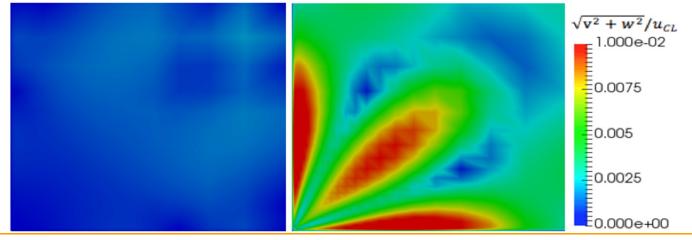




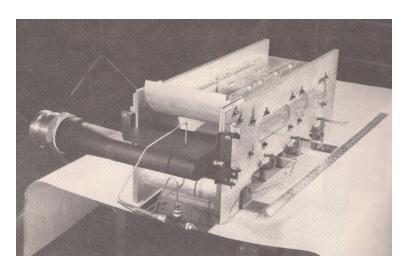

NASA Glenn S-Duct SA, WA and WA-DES

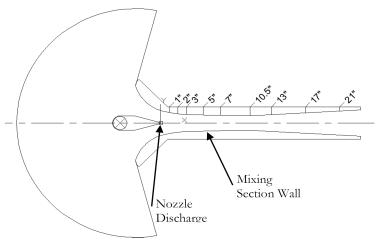


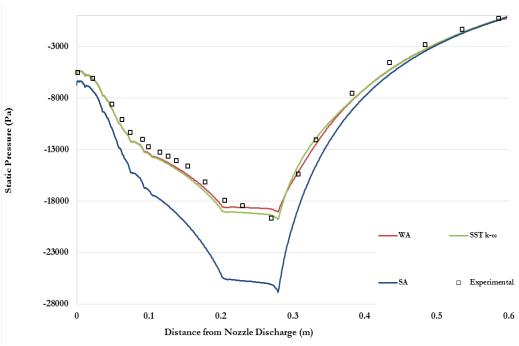


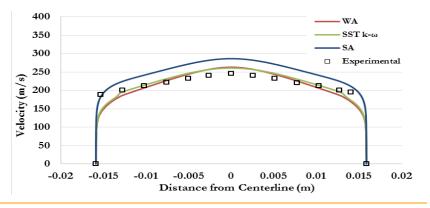

3D Supersonic Flow in a Square Duct WA and WA-QCR

Experiment of Davis and Gessner, M = 3.9, $Re_D = 508,000$, D = 25.4mm, x/D = 50

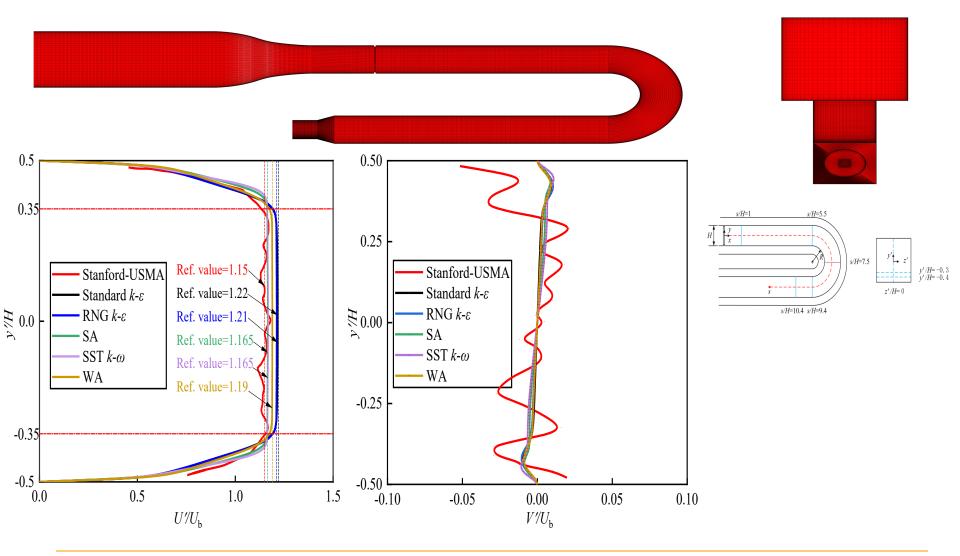


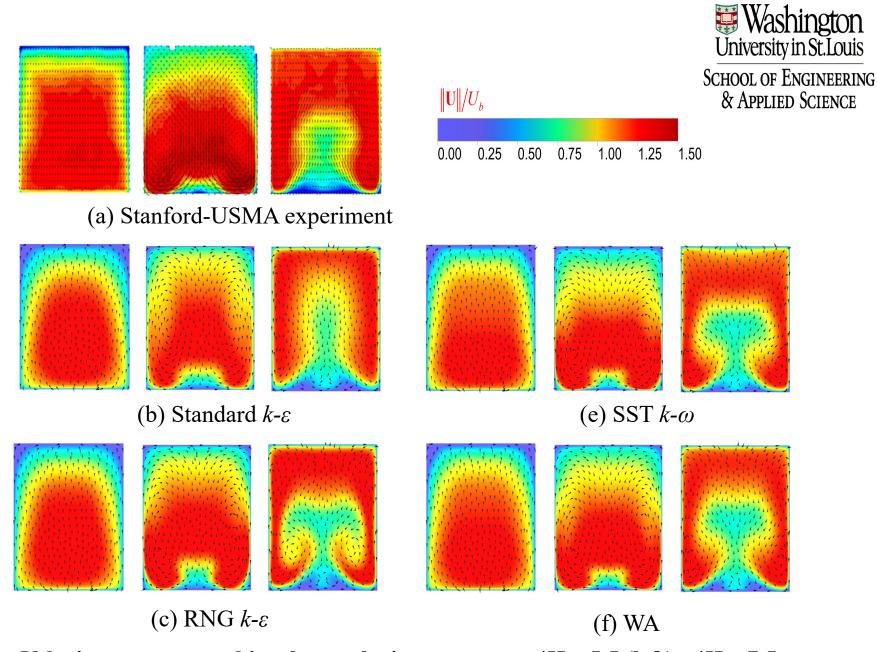



2D Slot Nozzle Ejector



"Run5", $P_{\text{nozzle}} = 31.71 \text{ Psia}$, $T_{\text{nozzle}} = 648 \text{ R}$, Mixing Section Throat = 1.25", $\dot{m}_{nozzle} = 0.0787$

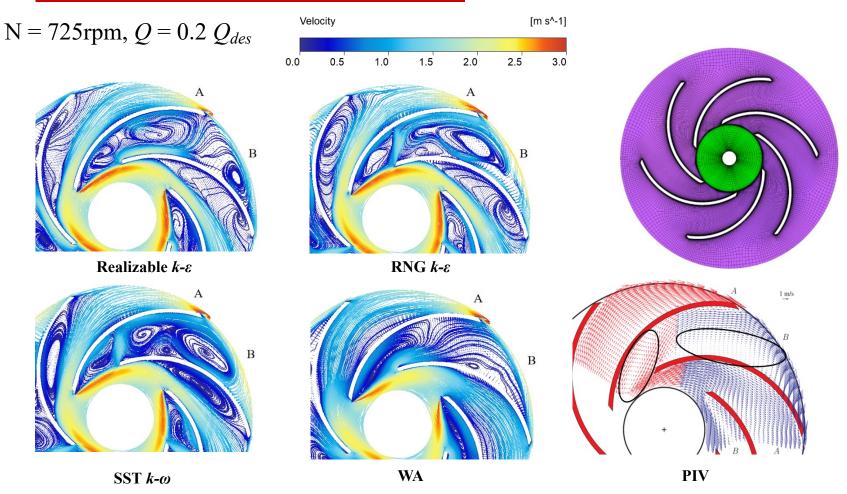



RANS Simulations in a U-Bend

Washington
University in St.Louis
School of Engineering
& Applied Science

Physics of Fluids, 2021, 33 (12):125117

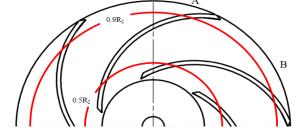
Velocity at inlet = 0.15m/s, Pressure at outlet = 1 atm.

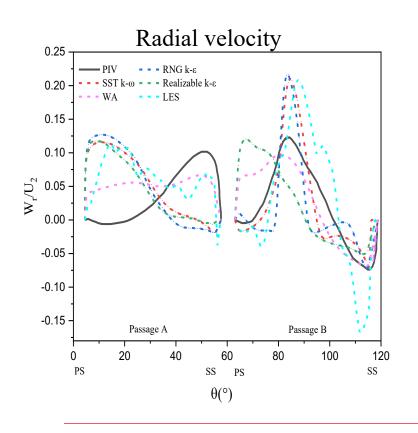


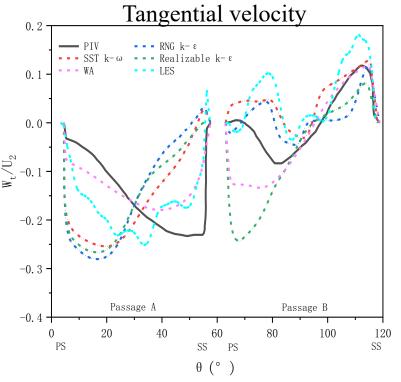
Velocity contours and in-plane velocity vectors at s/H = 5.5 (left), s/H = 7.5 (middle), s/H = 9.4 (right)

Stall Prediction in a Centrifugal Pump

Journal of Fluids Engineering, 2021, 143(3): 031203


Comparisons of the streamline distribution at impeller middle section


Stall Prediction in a Centrifugal Pump


Journal of Fluids Engineering. 2021, 143(3): 031203

Comparisons of velocity distribution at $z/b_2=0.5$, $r/R_2=0.5$

WA-y Transition Models

• WA- γ (https://turbmodels.larc.nasa.gov/wa-gamma transition 2eqn.html)

$$\frac{\partial \rho R}{\partial t} + \frac{\partial \rho u_{j} R}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[(\mu + \sigma_{R} \mu_{T}) \frac{\partial R}{\partial x_{j}} \right] + \gamma \rho C_{1} R S + \gamma \rho f_{1} C_{2k\omega} \frac{\partial R}{\partial x_{j}} \frac{\partial S}{\partial x_{j}} \frac{R}{S} + P_{R}^{lim} - \max(\gamma, 0.1)(1 - f_{1})\rho C_{2k\varepsilon} \left(\frac{R \frac{\partial S}{\partial x_{j}}}{S} \right)^{2}$$

$$\frac{\partial \rho R}{\partial t} + \frac{\partial \rho u_{j} R}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[(\mu + \sigma_{R} \mu_{T}) \frac{\partial R}{\partial x_{j}} \right] + \gamma \rho C_{1} R S + \gamma \rho f_{1} C_{2k\omega} \frac{\partial R}{\partial x_{j}} \frac{\partial S}{\partial x_{j}} \frac{R}{S} + P_{R}^{lim} - \max(\gamma, 0.1)(1 - f_{1})\rho C_{2k\varepsilon} \left(\frac{R \frac{\partial S}{\partial x_{j}}}{S} \right)^{2}$$

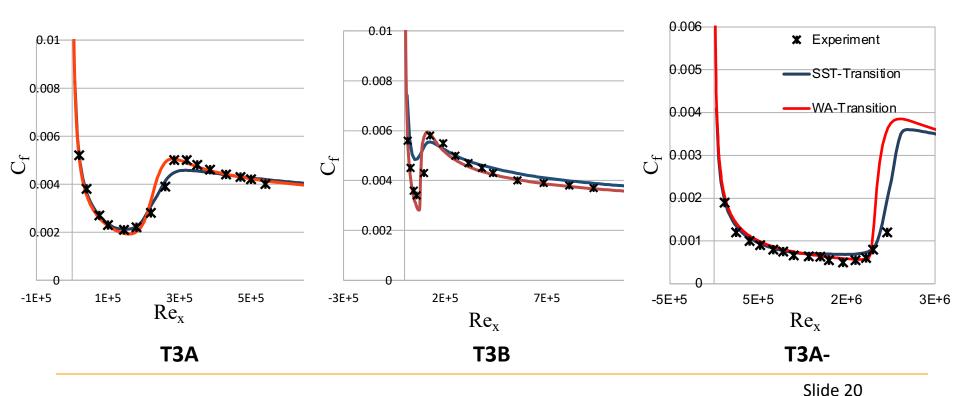
$$\frac{\partial \rho \gamma}{\partial t} + \frac{\partial \rho u_j \gamma}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_T}{\sigma_{\gamma}} \right) \frac{\partial \gamma}{\partial x_j} \right] + F_{length} \rho S \gamma (1 - \gamma) F_{onset} - \rho c_{a2} \Omega \gamma F_{turb} (c_{e2} \gamma - 1)$$

• WA-AT (https://turbmodels.larc.nasa.gov/wa-at transition leqn.html)

$$\frac{\partial R}{\partial t} + \frac{\partial u_{j}R}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left[(\sigma_{R}R + \nu) \frac{\partial R}{\partial x_{j}} \right] + C_{1} \gamma RS + f_{1} C_{2kw} \frac{R}{S} \frac{\partial R}{\partial x_{j}} \frac{\partial S}{\partial x_{j}} - (1 - f_{1}) min \left[C_{2k\omega} R^{2} \left(\frac{\frac{\partial S}{\partial x_{j}} \frac{\partial S}{\partial x_{j}}}{S^{2}} \right), C_{m} \frac{\partial R}{\partial x_{j}} \frac{\partial R}{\partial x_{j}} \right]$$

$$\gamma = 1 - \exp(-\sqrt{Term_1} - \sqrt{Term_2})$$

$$Term_1 = \frac{\max(1.2Re_{\theta} - Re_{\theta c}, 0.0)}{\chi_1 Re_{\theta c}}, \ Term_2 = \max\left(\frac{v_t}{v}\chi_2, 0.0\right), \ \chi_1 = 0.02 \ \text{and} \ \chi_2 = 50$$

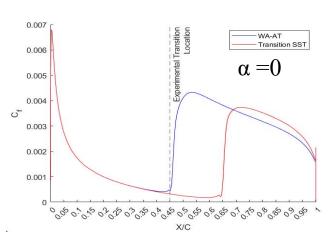

WA-γ Transition Model

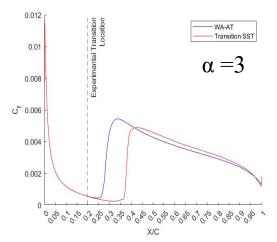
University in St.Louis School of Engineering & Applied Science

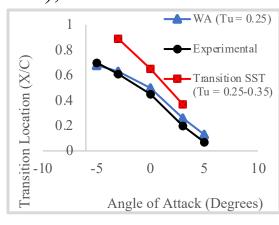
Nagapetyan & Agarwal, AIAA 2018-3384

• Three zero pressure gradient flat plate cases: T3A, T3B, T3A-

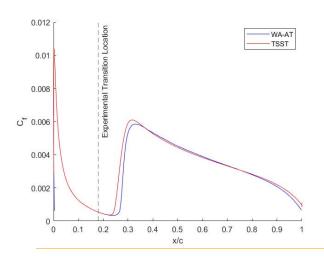
	U_{∞} (m/s)	$Tu_{\infty}(\%)$	μ_T/μ	ρ (kg/m³)	μ (kg/ms)	Re
T3A	5.4	3.5	13.3	1.2	1.8e-5	9e+5
T3B	9.4	6.5	100	1.2	1.8e-5	1.57e+6
T3A-	19.8	0.874	8.72	1.2	1.8e-5	3.3e+6

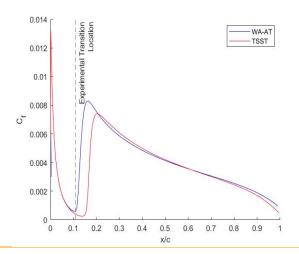


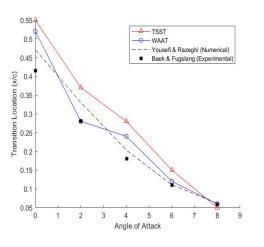

WA-AT Transition Model


Washington University in St. Louis School of Engineering & Applied Science

Xue & Agarwal, AIAA 2021-2712


• NACA 0012, Re = 3*10⁶, Exp: Gregory & O'Reilly (1973), AIAA 2022-3411





• NACA 0015, Re = $3*10^6$, Tu = 0.098%, $\mu_t/\mu = 10$, Exp: Baek & Fuslang

Slide 21

Summary

- A new one-equation turbulence model has been developed to have desirable characteristics of one-equation k- ω and one equation k- ε models.
- The new one-equation WA model has been used to simulate a number of wide-ranging canonical turbulent flow cases from NASA TMR and NPARC Alliance.
- The behavior of the WA model is very similar to the two-equation SST $k-\omega$ model.
- A clear advantage of the WA model's predictive capability over the SA model has been shown for a number of cases from subsonic to transonic to hypersonic wall bounded flows with small regions of separation and subsonic/supersonic free shear layer flows.
- Spalart-Shur R/C correction has been implemented and verified for WA model.
- Surface roughness corrections have been implemented and verified for WA model.
- Wall-Distance-Free WA model has been formulated and tested.
- Elliptic Blending has been included which showed improved predictions in few cases tested.
- The DES and IDDES versions of WA model have been developed which show improvement in accuracy over the WA model.
- The model has been extended to transitional flows (WA-γ and WA-AT).

Acknowledgements

- Some of this research was partially supported by NASA EPSCoR Program.
- PI is grateful to Dr. Mujeeb Malik for his support and help.
- PI is also grateful to Dr. Chris Rumsey for including the WA, WA-γ and WA-AT models in NASA TMR website, pointing out several typos in the written version of the model and helping Aaron Erb of MS&T in putting the model in FUN3D.
- The presentation is based on the work of many graduate students: Tim Wray, Xu Han, Hakop Nagapetyan, Xiao Zhang, Bryce Thomas, Yan Xue, Karsten Hendrickson, Dean Ryan-Simmons, Colin Graham and Isaac Witte among others.
- The research has been presented at AIAA and ASME conferences.
- The conference papers and journal papers are available.
- Code modules for OpenFOAM and Fluent UDFs are available upon request.