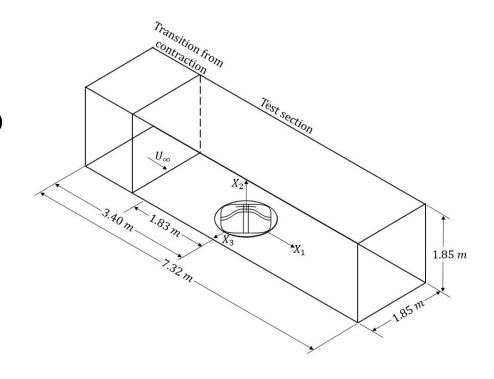
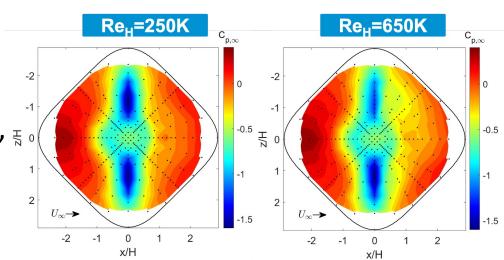


Benchmark Turbulence Modeling Validation Experiments for Three-Dimensional Flows with Separation

Todd Lowe (<u>kelowe@vt.edu</u>)

Julie Duetsch-Patel, Aldo Gargiulo, Thomas Ozoroski, Aurélien Borgoltz, William J. Devenport, and Christopher J. Roy

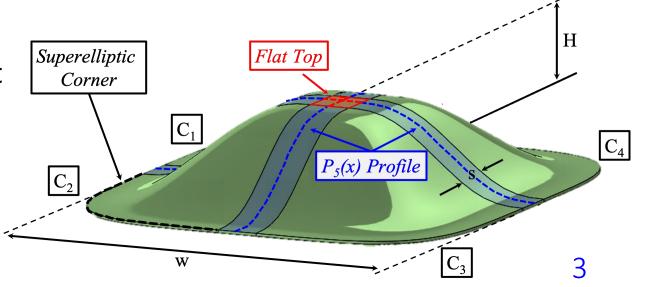

Kevin T. Crofton Department of Aerospace and Ocean Engineering


2022 Symposium on

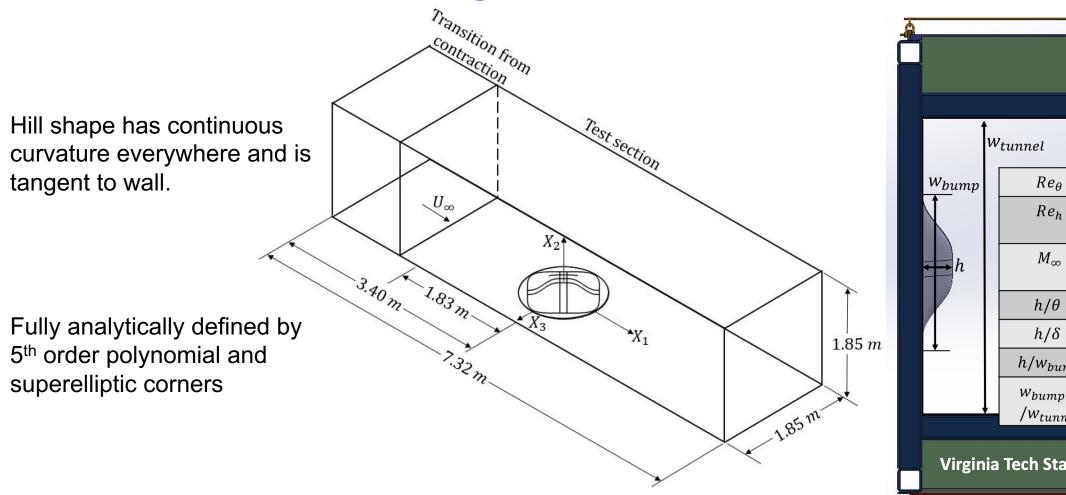
Turbulence Modeling: Roadblocks, and the Potential for Machine Learning 27 July 2022

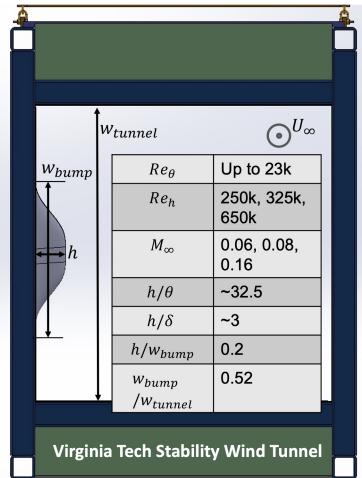
Bottom line up front

- BeVERLI* project has led to a highly documented, 3D separating flow test case. Data available through NATO AVT-349 and will be released more broadly.
- 2. Several interesting and challenging features of baseline BeVERLI hill case: Reynolds number sensitivity, skewed attached TBLs, symmetry breaking.
- Complementary to the well developed and documented Speed Bump with different physics emphases.



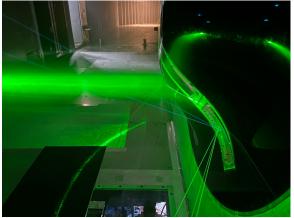
^{*}Benchmark Validation Experiments for RANS/LES Investigations


Some BeVERLI background


- RANS and turbulence modeling workhorse in CFD
 - DNS and LES still expensive
 - CFD for high-impact decisions
- Benchmark Validation Experiments for RANS/LES Investigations (BeVERLI) hill case
 - CFD validation experiment at highest levels of completeness
 - Simple hill geometry encapsulating effects of 3D, non-equilibrium TBLs
 - Experiment and simulations

- NATO AVT-349
 - Members from academia, gov. and non-gov. labs, and industry around the globe
 - Advance accuracy and range of prediction models for high Reynolds number non-equilibrium TBLs

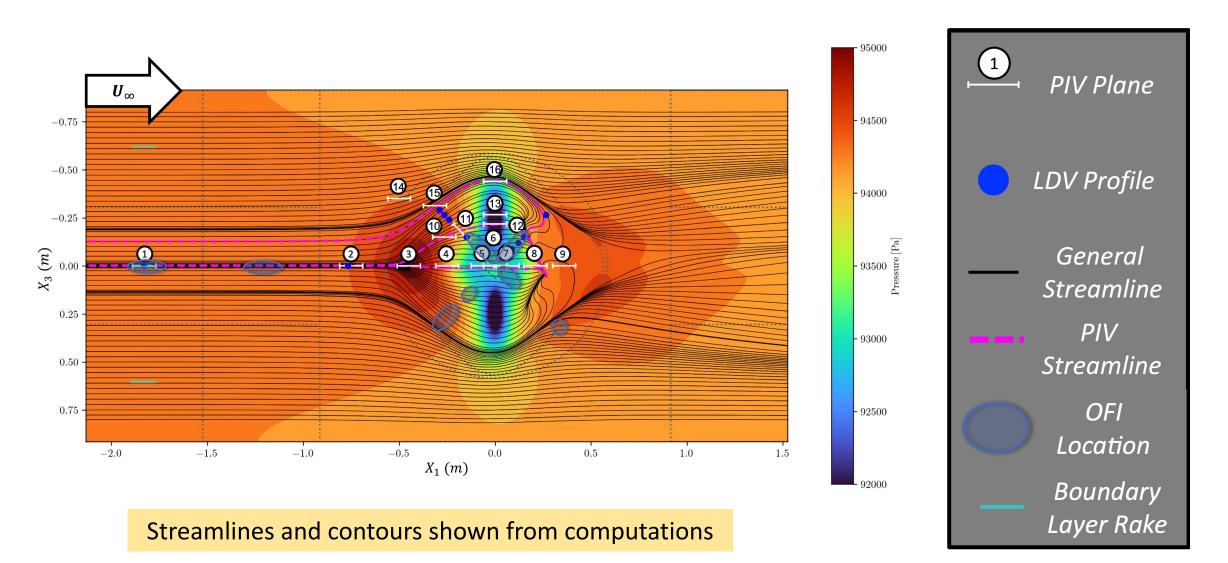
BeVERLI hill configuration

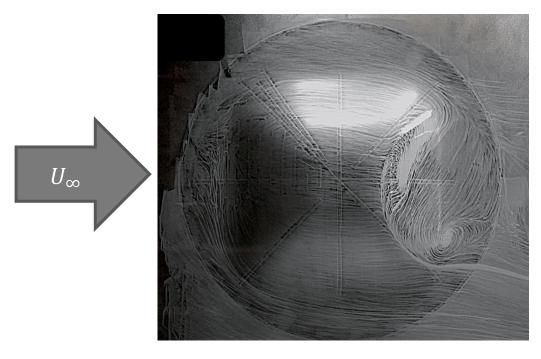


Baseline case: 45° yaw, $Re_h = 250k$

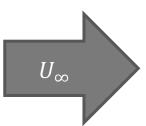
BeVERLI experimental data summary

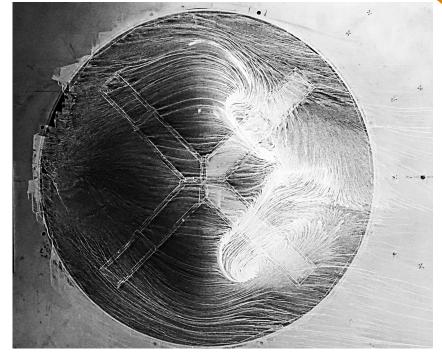
- Flow topology from oil flow visualization
- > 80 sets of static pressure data over three Re_H and many angle rotations
- Inflow boundary layer spanwise distribution measurements
- Inflow velocity cross-section
- Centerline inflow boundary layer turbulence measurements
- 11 LDV locations on the bump at Re_H=250K and 325K, plus two upstream locations
- 30 TB of PIV data collected over 16 planes and three Re_H
- >10 oil-film interferometry* measurement locations of direct wall skin friction





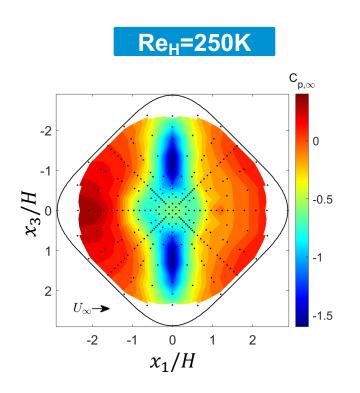
BeVERLI data summary

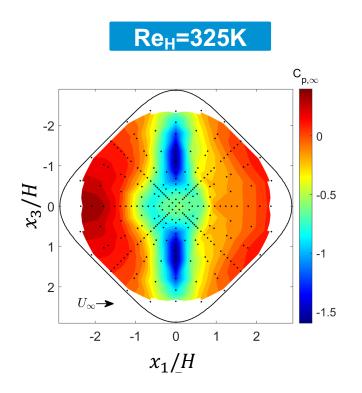


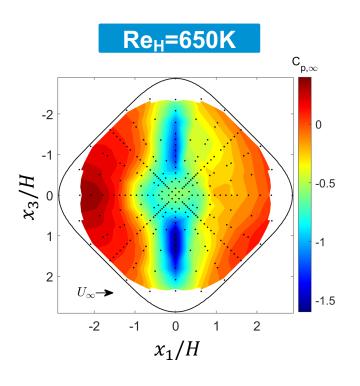

The BeVERLI hill geometry produces a wide spectrum of flow physics

0° yaw case (bluff case)

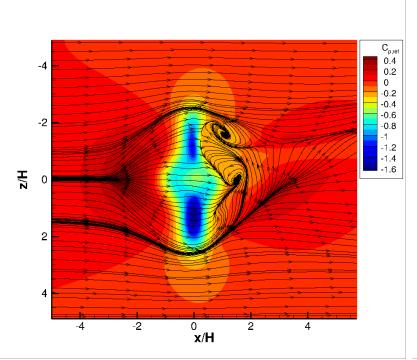
- Asymmetric
- Unsteady/switching asymmetry
- Reduced skewing



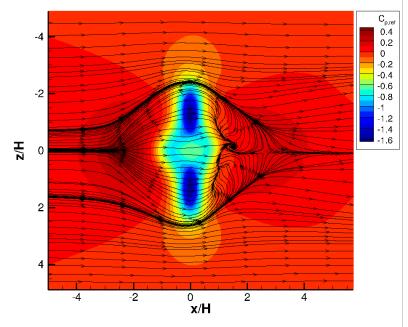

45° yaw case (streamlined case)


- Reynolds number-dependent symmetry
- Steady asymmetry
- Considerable skewing

The 45° case has Reynolds numberdependent asymmetry



Leeside unsteady pressure measurements reveal no asymmetry switching.


Steady RANS computations on 45-degree hill

SENSEI Level 2 k-ω

 $Re_{H} = 650K C_{p,ref}$

Computations courtesy Chris Roy and Thomas Ozoroski

SENSEI Level 2 SA-neg Re_H = 650K $C_{p,ref}$

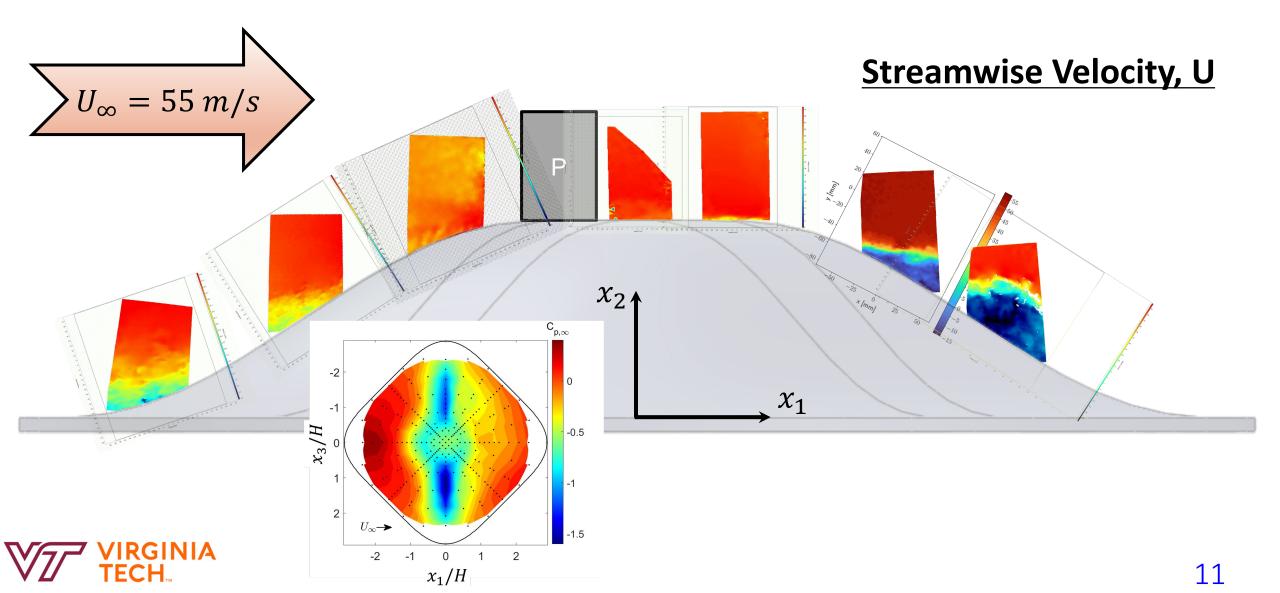
2 2 4 2 4 2 4 1.6

SENSEI Level 1 SA-neg $Re_H = 650K C_{p,ref}$ (with van Leer limiter)

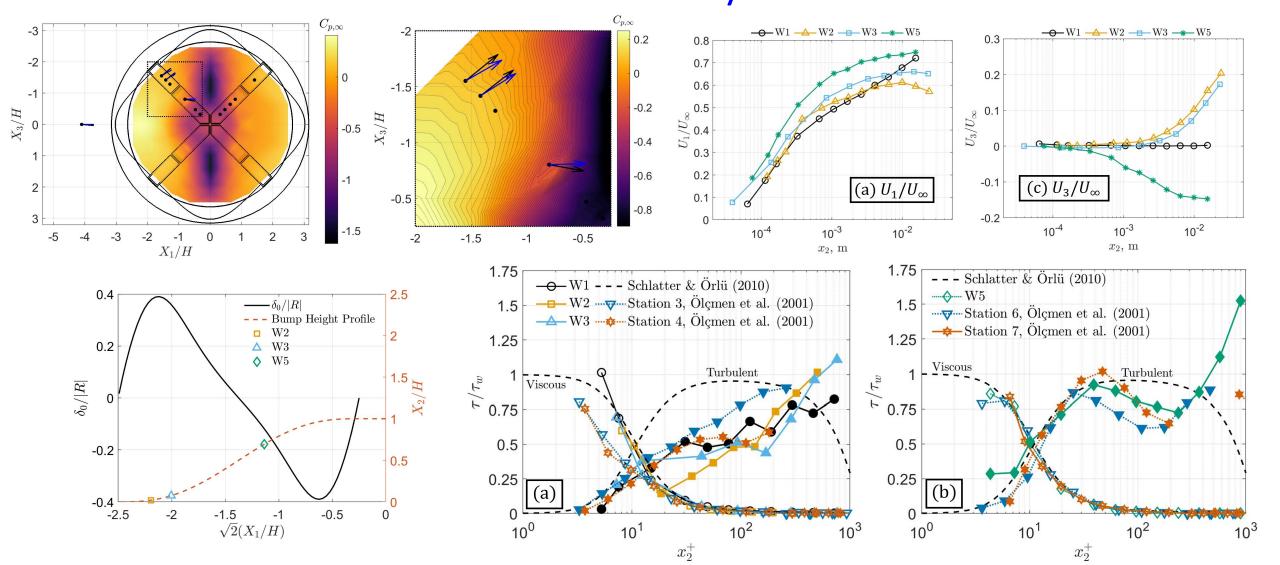
Steady RANS computations on 45-degree hill

Points courtesy Chris Roy

 The Menter k-ω SST (2003) model predicts asymmetric wakes at all Reynolds numbers and on all grids, but not always on the same side


 The SA-neg model predicts symmetric wakes at all Reynolds numbers and grids, except for Re = 650k on the finest grid (limiters may play a role)

 ANSYS/Fluent and SENSEI predict significantly different results, due to either numerical diffusion or model differences



Additional findings coming from 4 other groups computing and analyzing BeVERLI cases through NATO AVT-349, including GEP @ U of Melbourne and eddy resolving calcs at U of New Brunswick.

Sample PIV results: 45° , centerline, $Re_{H} = 650k$

3-c LDV results show interesting structure in near-wall stress layer Duetsch-Patel et al. (2022)

Key points revisited and looking ahead

- BeVERLI hill baseline (45°) case
 - Highly documented for BCs and SRQs
 - Field measurements include 3D TBL development
 - Global features sensitive to experimental and computational parameters
 - Still to be determined what this means for relative performance of RANS models
- BeVERLI hill experiments continue, asymmetric blind challenge case TBA.
- Stability Wind Tunnel boundary conditions being explored through new NATO group

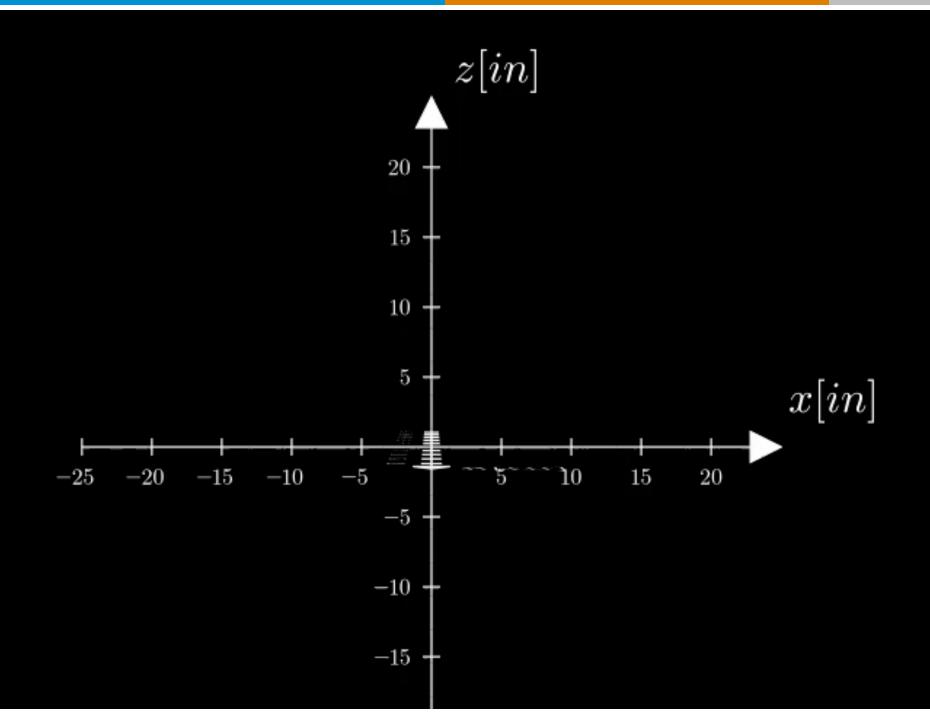
Contents lists available at ScienceDirect

Progress in Aerospace Sciences

rogress in Aerospace Sciences 131 (2022) 100807

AEROSPACE SCIENCE SCIENCE STATE OF THE PROPERTY OF THE PROPERT

Equilibrium and non-equilibrium turbulent boundary layers


William J. Devenport*, K. Todd Lowe

Center for Research and Engineering in Aero/hydrodynamic Technologies, Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, USA

In case you missed it, William
Devenport and I took a look at TBL
similarity and physics of the turbulence
structure: PAS Vol.131

I will be pleased to share this or any of our references on request.

Backup charts

Acknowledgements

Current students: (Not shown: Tom Hallock, Danny Fritsch, Vidya Vishwanathan, Cole Beardsley, others)

The VT team spans the range of interests and expertise for conducting the turbulence modeling benchmark experiment.

Getting leverage from synergies to support the large team.

Julie Duetsch-Patel

Aldo Gargiulo

Thomas Ozoroski Vignesh Sundarraj

Aurélien Borgoltz

William Devenport

Chris Roy

Máté Szőke

Supported by NASA NRA grants: 80NSSC18M0146, 80NSSC22M0061 Monitors: Michael Kegerise and Mujeeb Malik

Principles of validation experiments

Key primary source for principles: Oberkampf, W.L. and Smith, B., 2014. Assessment criteria for computational fluid dynamics validation benchmark experiments. In *52nd Aerospace Sciences Meeting*, paper AIAA 2014-0205.

- Experiments should be designed by a team of experts: experimentalists, modelers, computationists
- Measurements should be specified to support multi-fidelity validation of models and computations
 - Modeling terms and outputs of interest System response quantities (SRQs)
 - Boundary condition measurement is critical
- Experimental assessment of uncertainties, sensitivities taking advantage of symmetries
- Formal assessment of experimental documentation Oberkampf and Smith

Oberkampf and Smith "completeness" assessment: William L. Oberkampf and Barton Smith, "Assessment Criteria for Computational Fluid Dynamics Model Validation Experiments," *ASME Journal of Verification, Validation, and Uncertainty Quantification*, 2(4), 2017.

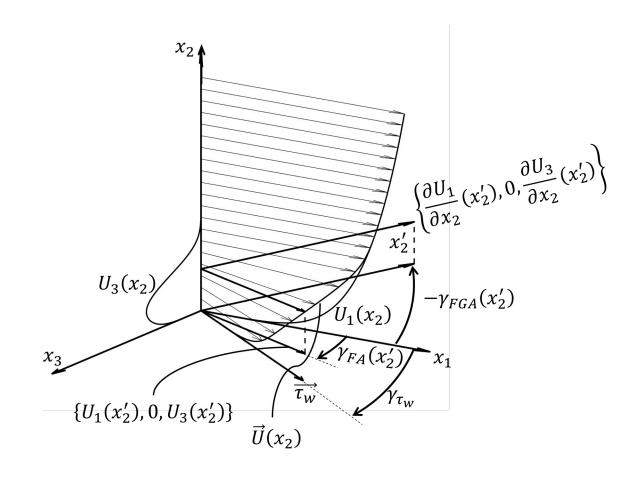
Sample criteria:

	COMPLETENESS	Completeness Level 0	Completeness Level 1	Completeness Level 2	Completeness Level 3					
		 Little or no information on 	 Some inflow quantities 	Most inflow quantities measured	Fine-scale inflow quantities measured					
No prior experiments assess to completeness level 3 for all										
	(or perhaps any one) of the attributes.									
NIA TEC			dimensions measured	measured	Inflow and outflow quantities measured at multiple streamwise locations					

Completeness	Completeness Level 0	Completeness Level 1	Completeness Level 2	Completeness Level 3	Attribute Score
Attribute					
Experimental Facility		Assessed			1
Analog Instrumentation and			Assessed		2
Signal Processing					
Boundary and Initial		Assessed			1
Conditions					
Fluid and Material Properties	Assessed				0
Test Conditions			Assessed		2
Measurement of System		Assessed			1
Responses					

Meme credit: Máté Szőke

What exactly is equilibrium in TBLs?


"Equilibrium, taken here to be synonymous with self-preservation, is an idealized state achieved when all flow properties achieve **self-similarity** based on a consistent set of scaling variables and thus the normalized flow is **no longer a function streamwise position**. In this state all aspects of the flow **remain in the same balance** from station to station." from Devenport and Lowe (2022)

- 1. Mathematical equilibrium/self-similarity requires reduction of independent variables down to 1 variable so that an ODE may be written.
- 2. No strict self-similarity is possible because 2D TBLs have at least 2 primary length scales Result: must choose inner similarity or outer similarity for computing equilibrium

Why can't *aerodynamic* 3D TBLs be in equilibrium?

- Narrow class of equilibrium 3D TBLs exists:
 - Wall-parallel homogeneity
 - Begin as 3D, remain 3D with same profile throughout lifetime
- Typical aerodynamic TBL: swept wing case
 - Homogeneous 2D flow encounters wing with spanwise pressure gradient
 - Boundary layer turns continuously
 - Balance of pressure gradient, Reynolds stress gradients, and wall shear gradients continually changing
 - Skewed 3D TBL *cannot* have constant pressure gradient because such a flow reverts to a 2D TBL (e.g., Lozano-Durán et al. 2020 after transient)

There may (or may not) be some form of near-wall similarity for 3D TBLs

First off, in viscous sublayer neglecting wall curvature, we have a rigorous form:

$$U_{1}^{+} = \frac{\partial P^{+}}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}$$

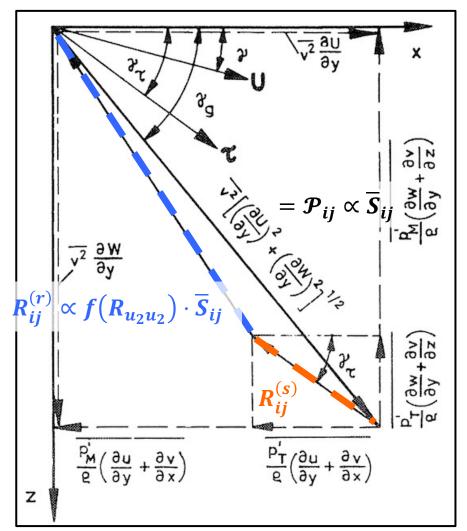
$$\gamma_{FA} = \tan^{-1} \frac{U_{3}^{+}}{U_{1}^{+}} \approx \frac{\frac{\partial P}{\partial x_{3}^{+}} \frac{x_{2}^{+^{2}}}{2}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P^{+}}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{1}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{2}^{+}}{\frac{\partial P}{\partial x_{3}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+^{2}}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{3}^{+^{2}}}{\frac{\partial P}{\partial x_{3}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+^{2}}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{3}^{+^{2}}}{\frac{\partial P}{\partial x_{3}^{+}} \frac{x_{2}^{+^{2}}}{2} + x_{2}^{+^{2}}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{3}^{+^{2}}}{\frac{\partial P}{\partial x_{3}^{+}} \frac{x_{3}^{+^{2}}}{2} + x_{3}^{+^{2}}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{3}^{+^{2}}}{\frac{\partial P}{\partial x_{3}^{+}} \frac{x_{3}^{+^{2}}}{2} + x_{3}^{+^{2}}} = \frac{\frac{\partial P}{\partial x_{3}^{+}} x_{3}^{+^{2}}}{\frac{\partial P}{\partial x_{3}^{+}} \frac{x_{3}^{+^{2}}}{2} + x_{3}^{+^{2}}}$$

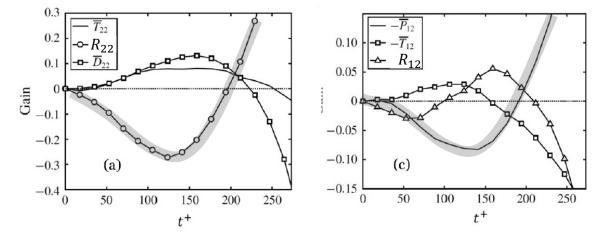
The sublayer is co-planar, right? It depends upon Reynolds number $\gamma_{FA} \approx 4\beta x_2^+/Re_{\tau}$

The topic is much less settled for near-wall regions where turbulence is important. van den Berg's (1975) remains the leading theory for 3D LOTW:

$$U_1^+ = \frac{1}{\kappa} \left[\ln x_2^+ + A + \frac{1}{2} \alpha_1 x_2^+ + \frac{1}{2} \frac{\beta_1 \left(\ln x_2^+ \right)^2 x_2^+}{\kappa^2} \right]$$

$$U_3^+ = \frac{1}{\kappa} \left[\alpha_3 (x_2^+ + b) + \beta_3 \frac{(\ln x_2^+)^2 x_2^+}{\kappa^2} \right]$$


Assumes:


- Mixing length model for turbulence
- Balance of TKE production/dissipation

Accounts:

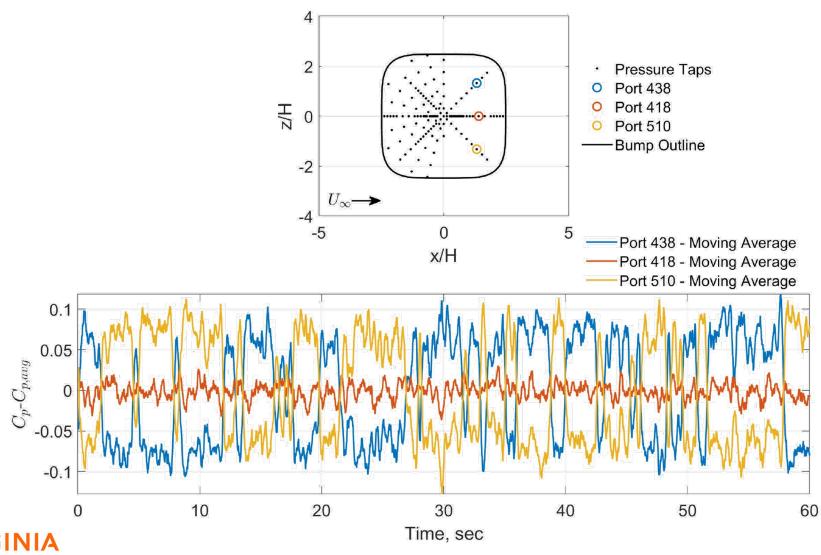
- 1. Non-linear convection terms
 - 2. Pressure gradients
- Wall shear stress gradients

Pressure-strain (R_{ij}) key to understanding turbulence

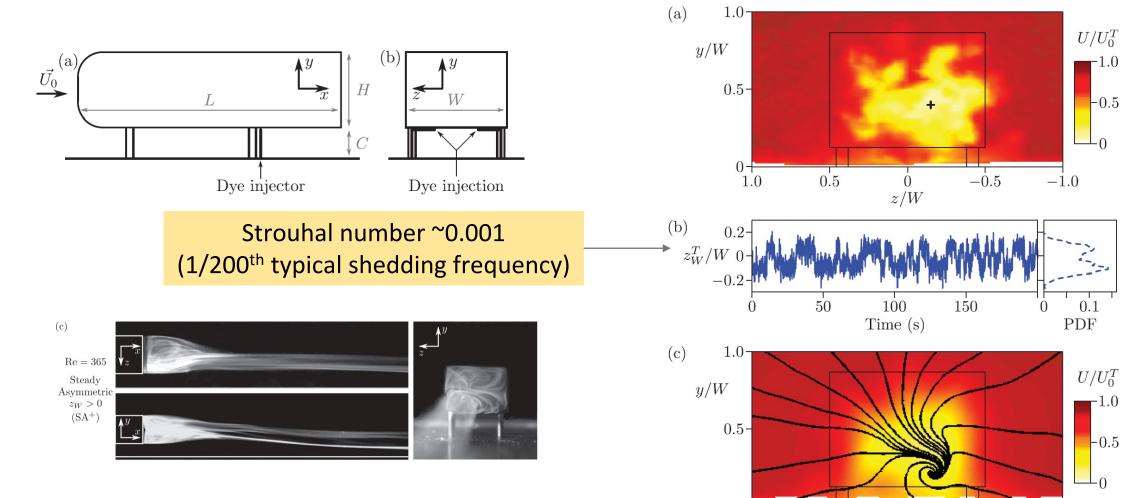
From: Lozano-Durán et al., 2020)

Flow skewing primary source of effects

Lag: *local process* linked to R_{ij} and *flow-skewing* $\partial \gamma_{FA}/\partial x_2$ (negligible history effects)


Depression in $\overline{u_iu_j}$ $(i \neq j)$: due to *depression in*

- $\overline{u_2^2}$ and, consequently, R_{ij} , controlled by
- $\partial \overline{U}_3/\partial x_2$ (skewing), which reduces p
- $Reduction of R_{u_2u_2}$ (upstream history effect)


(Rotta, 1979)

(Lowe & Simpson, 2008), (Lozano-Durán et al., 2020)

In contrast, 0° case is more unwieldy

The 0° case asymmetry is akin to the Ahmed body, switching is wake driven (tail wags dog)

0.5

z/W

1.0

-0.5

-1.0

Grandemange, M., Cadot, O. and Gohlke, M., 2012. Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies. *Physical review E*, 86(3), p.035302.

Thank you!

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

Group status overview

- SciTech 2022: The group fielded 4 papers covering experiments and computations on all three cases
 - ➤ These were all very good contributions, but additional steps needed to solidify impact
- Technical themes and opportunities
 - > Relaminarization effects seen even at high Reynolds number
 - > Roles of pressure gradients combined with curvature effects
 - > Strong grid, solver, turbulence model sensitivities
 - Symmetry breaking phenomena (steady and unsteady)
 - Great value in exploring wide range of RANS models
 - Important that eddy resolving computations be done for these cases

Computational/experimental differences even in upstream regions