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1. BeVERLI* project has led to a highly documented, 3D 
separating flow test case. Data available through 
NATO AVT-349 and will be released more broadly.

2. Several interesting and challenging features of 
baseline BeVERLI hill case: Reynolds number 
sensitivity, skewed attached TBLs, symmetry 
breaking. 

3. Complementary to the well developed and 
documented Speed Bump with different physics 
emphases.

4. Looking ahead: blind challenge case being prepared, 
wind tunnel boundary conditions for simulation.
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Bottom line up front

*Benchmark Validation Experiments for RANS/LES Investigations



• RANS and turbulence modeling 
workhorse in CFD
v DNS and LES still expensive
v CFD for high-impact decisions

• Benchmark Validation Experiments 
for RANS/LES Investigations 
(BeVERLI) hill case
v CFD validation experiment at highest 

levels of completeness
v Simple hill geometry encapsulating 

effects of 3D, non-equilibrium TBLs
v Experiment and simulations

• NATO AVT-349
v Members from academia, gov. and 

non-gov. labs, and industry around 
the globe

v Advance accuracy and range of 
prediction models for high Reynolds 
number non-equilibrium TBLs
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Some BeVERLI background



BeVERLI hill configuration

Slide 4

Baseline case: 45∘ yaw, 𝑅𝑒" = 250𝑘

Hill shape has continuous 
curvature everywhere and is 
tangent to wall.

Fully analytically defined by 
5th order polynomial and 
superelliptic corners



• Flow topology from oil flow visualization
• > 80 sets of static pressure data over three ReH and many 

angle rotations
• Inflow boundary layer spanwise distribution measurements
• Inflow velocity cross-section
• Centerline inflow boundary layer turbulence measurements
• 11 LDV locations on the bump at ReH=250K and 325K, plus two 

upstream locations
• 30 TB of PIV data collected over 16 planes and three ReH

• >10 oil-film interferometry* measurement locations of direct 
wall skin friction
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BeVERLI experimental data summary

*UTIAS collaboration key



BeVERLI data summary
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Streamlines and contours shown from computations
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The BeVERLI hill geometry produces a 
wide spectrum of flow physics

𝟎∘ yaw case (bluff case)
• Asymmetric
• Unsteady/switching asymmetry
• Reduced skewing

𝟒𝟓∘ yaw case (streamlined case)
• Reynolds number-dependent symmetry
• Steady asymmetry
• Considerable skewing

𝑈" 𝑈"
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The 45o case has Reynolds number-
dependent asymmetry

ReH=250K ReH=325K

𝑥!/𝐻 𝑥!𝑥!/𝐻

ReH=650K

𝑥!/𝐻

𝑥 "
/𝐻

𝑥 "
/𝐻 𝑥 "
/𝐻

Leeside unsteady pressure measurements reveal no 
asymmetry switching.
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Steady RANS computations on 45-degree hill

SENSEI Level 2 k-ω
ReH = 650K Cp,ref

SENSEI Level 2 SA-neg 
ReH = 650K Cp,ref

SENSEI Level 1 SA-neg
ReH = 650K Cp,ref

(with van Leer limiter)

Computations courtesy Chris Roy and Thomas Ozoroski



• The Menter k-ω SST (2003) model predicts asymmetric wakes at all 
Reynolds numbers and on all grids, but not always on the same side

• The SA-neg model predicts symmetric wakes at all Reynolds numbers and 
grids, except for Re = 650k on the finest grid (limiters may play a role)

• ANSYS/Fluent and SENSEI predict significantly different results, due to 
either numerical diffusion or model differences
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Steady RANS computations on 45-degree hill
Points courtesy Chris Roy

Additional findings coming from 4 other groups computing and analyzing 
BeVERLI cases through NATO AVT-349, including GEP @ U of Melbourne 

and eddy resolving calcs at U of New Brunswick.



P
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Sample PIV results: 45∘, centerline, ReH = 650k

Streamwise Velocity, U
𝑈% = 55 𝑚/𝑠

𝑥&

𝑥'
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3-c LDV results show interesting 
structure in near-wall stress layer Duetsch-Patel et al. (2022)



• BeVERLI hill baseline (45∘) case
• Highly documented for BCs and SRQs
• Field measurements include 3D TBL development
• Global features sensitive to experimental and 

computational parameters
• Still to be determined what this means for relative 

performance of RANS models

• BeVERLI hill experiments continue, 
asymmetric blind challenge case TBA.

• Stability Wind Tunnel boundary conditions 
being explored through new NATO group
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Key points revisited and looking ahead

In case you missed it, William 
Devenport and I took a look at TBL 

similarity and physics of the turbulence 
structure: PAS Vol.131

I will be pleased to share this or any of 
our references on request.

Always looking for requests for desired data (quantity/location) 
or boundary conditions.
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Backup charts
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• Experiments should be designed by a team of experts: experimentalists, modelers, 
computationists

• Measurements should be specified to support multi-fidelity validation of models and 
computations
• Modeling terms and outputs of interest – System response quantities (SRQs)

• Boundary condition measurement is critical
• Experimental assessment of uncertainties, sensitivities taking advantage of symmetries

• Formal assessment of experimental documentation – Oberkampf and Smith
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Principles of validation experiments
Key primary source for principles: Oberkampf, W.L. and Smith, B., 2014. Assessment criteria for 
computational fluid dynamics validation benchmark experiments. In 52nd Aerospace Sciences 

Meeting, paper AIAA 2014-0205.
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Oberkampf and Smith “completeness” assessment: William L. Oberkampf and Barton 
Smith, “Assessment Criteria for Computational Fluid Dynamics Model Validation Experiments,” 
ASME Journal of Verification, Validation, and Uncertainty Quantification, 2(4), 2017.

Sample criteria:

No prior experiments assess to completeness level 3 for all  
(or perhaps any one) of the attributes.

Meme credit: Máté Szőke



“Equilibrium, taken here to be synonymous with self-preservation, is an idealized state 
achieved when all flow properties achieve self-similarity based on a consistent set of 

scaling variables and thus the normalized flow is no longer a function streamwise 
position. In this state all aspects of the flow remain in the same balance from station to 

station.” from Devenport and Lowe (2022)

1. Mathematical equilibrium/self-similarity requires reduction of independent variables 
down to 1 variable so that an ODE may be written.

2. No strict self-similarity is possible because 2D TBLs have at least 2 primary length scales
Result: must choose inner similarity or outer similarity for computing equilibrium
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What exactly is equilibrium in TBLs?



• Narrow class of equilibrium 3D TBLs exists:
• Wall-parallel homogeneity
• Begin as 3D, remain 3D with same profile 

throughout lifetime

• Typical aerodynamic TBL: swept wing case
• Homogeneous 2D flow encounters wing with 

spanwise pressure gradient
• Boundary layer turns continuously
• Balance of pressure gradient, Reynolds stress 

gradients, and wall shear gradients continually 
changing

• Skewed 3D TBL cannot have constant pressure 
gradient because such a flow reverts to a 2D TBL 
(e.g., Lozano-Durán et al. 2020 after transient)
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Why can’t aerodynamic 3D TBLs be in 
equilibrium?



First off, in viscous sublayer neglecting wall curvature, we have a rigorous form:

The topic is much less settled for near-wall regions where turbulence is important. van den 
Berg’s (1975) remains the leading theory for 3D LOTW:
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There may (or may not) be some form 
of near-wall similarity for 3D TBLs

The sublayer is co-planar, right?
It depends upon Reynolds number

𝛾#$ ≈ 4𝛽𝑥%&/𝑅𝑒'

Assumes:
1. Mixing length model for turbulence

2. Balance of TKE production/dissipation
Accounts:

1. Non-linear convection terms
2. Pressure gradients

3. Wall shear stress gradients



Flow skewing primary source of effects

Lag: local process linked to 𝑹𝒊𝒋 and flow-
skewing 𝜕𝛾%&/𝜕𝑥' (negligible history effects)

Depression in 𝒖𝒊𝒖𝒋 (𝒊 ≠ 𝒋): due to depression in 
𝒖𝟐𝟐 and, consequently, 𝑹𝒊𝒋, controlled by
v𝜕𝑈!/𝜕𝑥" (skewing), which reduces 𝑝
vReduction of 𝑅#!#! (upstream history effect)

Pressure-strain (𝑅"#) key to 
understanding turbulence
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(Rotta, 1979)

(Lowe & Simpson, 2008),
(Lozano-Durán et al., 2020) 

𝑹𝒊𝒋
𝒓 ∝ 𝒇 𝑹𝒖𝟐𝒖𝟐 ⋅ 𝑺𝒊𝒋

𝑹𝒊𝒋
𝒔

= 𝓟𝒊𝒋 ∝ 𝑺𝒊𝒋

From: Lozano-Durán et al., 2020)

𝑅""
𝑅#"
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In contrast, 0∘ case is more unwieldy



24

The 0∘ case asymmetry is akin to the Ahmed body, 
switching is wake driven (tail wags dog)

Strouhal number ~0.001 
(1/200th typical shedding frequency)

Grandemange, M., Cadot, O. and Gohlke, M., 2012. Reflectional 
symmetry breaking of the separated flow over three-dimensional bluff 
bodies. Physical review E, 86(3), p.035302.



Thank you!
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Group status overview
• SciTech 2022: The group fielded 4 papers covering 

experiments and computations on all three cases
Ø These were all very good contributions, but additional steps 

needed to solidify impact

• Technical themes and opportunities
Ø Relaminarization effects seen even at high Reynolds number
Ø Roles of pressure gradients combined with curvature effects
Ø Strong grid, solver, turbulence model sensitivities
Ø Symmetry breaking phenomena (steady and unsteady)
Ø Great value in exploring wide range of RANS models
Ø Important that eddy resolving computations be done for these 

cases

Slide 26

Computational/experimental 
differences even in upstream 

regions


