

P. G. Huang

Department of Mechanical and Materials Engineering

Wright State University

Dayton, OH 45431

2022 Symposium on

Turbulence Modeling: Roadblocks, and the Potential for Machine Learning Lockheed Martin Center of Innovation ("The Lighthouse"),

Suffolk, VA 23435 27-29 July, 2022

Closure Problem

$$\frac{\partial \overline{u}_{i}}{\partial x_{i}} = 0$$

$$\rho \frac{D\overline{u}_{j}}{Dt} = -\frac{\partial \overline{p}}{\partial x_{j}} + \mu \frac{\partial^{2} \overline{u}_{j}}{\partial x_{i}^{2}} + \frac{\partial \tau_{ij}^{t}}{\partial x_{i}}$$
where $\tau_{ij}^{t} = -\rho \overline{u_{i}' u_{j}'}$

$$= -\rho \begin{bmatrix} \overline{u' u'} & \overline{u' v'} & \overline{u' w'} \\ \overline{v' u'} & \overline{v' v'} & \overline{v' w'} \\ \overline{w' u'} & \overline{w' v'} & \overline{w' w'} \end{bmatrix}$$

$$\rho \frac{D\overline{u_i'u_j'}}{Dt} = -\left(\rho \overline{u_i'u_k'} \frac{\partial \overline{u}_j}{\partial x_k} + \rho \overline{u_j'u_k'} \frac{\partial \overline{u}_i}{\partial x_k}\right)$$

$$-2\mu \frac{\partial u_i'}{\partial x_k} \frac{\partial u_j'}{\partial x_k} - \left(u_i' \frac{\partial p'}{\partial x_j} + u_j' \frac{\partial p'}{\partial x_i}\right)$$

$$-\frac{\partial}{\partial x_k} \left(\rho \overline{u_i'u_j'u_k'} - \mu \frac{\partial \overline{u_i'u_j'}}{\partial x_k}\right)$$

$$ASM$$

$$\rho \frac{D\overline{u_i'u_j'}}{Dt} = \rho \frac{\overline{u_i'u_j'}}{k} \frac{Dk}{Dt}$$

$$BVM$$

$$\tau_{ij}^{t} = -\rho \overline{u_{i}' u_{j}'} = \mu_{t} \left(\frac{\partial \overline{u}_{i}}{\partial x_{j}} + \frac{\partial \overline{u}_{i}}{\partial x_{j}} \right) - \frac{2}{3} \mu_{t} \delta_{ij} \frac{\partial \overline{u}_{k}}{\partial x_{k}} - \frac{2}{3} \rho \delta_{ij} k$$

Single-journey ML turbulence modeling

Two way coupling of ML turbulence modeling

Invariant Feature variables S_{ij} , W_{ij}

$$-u_i'u_j'$$
 or μ_t

Initiate with Solution of conventional turbulence model

$$\frac{\partial \overline{u}_{i}}{\partial x_{i}} = 0$$

$$\rho \frac{D\overline{u}_{j}}{Dt} = -\frac{\partial \overline{p}}{\partial x_{j}} + \mu \frac{\partial^{2} \overline{u}_{j}}{\partial x_{i}^{2}} + \rho \frac{\partial \overline{u}_{i}' u_{j}'}{\partial x_{i}}$$

ML Machine may have several variations

- ☐ Algebraic equations
 - Pope's Caley-Hamilton equations
 - Algebraic stress model equations
 - viscosity equation, v_t*
 - $\bullet b = \mathbf{v}_t S + \Delta \tau^{\perp}$
- Differential equations
 - One-equation model equations*
 - Two-equation model equations*
 - Reynolds stress model equations
- * with Boussinesq eddy viscosity hypothesis

☐ Generalization of physical phenomena in different flow regimes may not be so obvious.

Benchmark building-block flows

- Successes in predicting benchmark flows are necessary conditions, not sufficient conditions, for model generalization.
- The model (or machine) must know to obey asymptotic behaviors.

My personal observations

- >ML is a good compromise of several training data (flows).
- >ML may miss details of (unmonitored) flow physics.
- ➤ Galilean invariance is nice but:
 - Features invariance but f: may not
 - ➤ How to identify similarity-scaling invariance, for example?
- The accuracy of ML approach depends on the choice of the training data. ML models may be
 - ➤ Data dependent
 - > Geometry dependent
 - > Case dependent
- Extension of the ML models to high Re number is questionable.
 - ➤ Are the training data extrapolatable?
- Current ML approach is not flow-physics based.
- Current ML models do not reply on building-block (benchmark) experiments.

History of TMR

- ► 1968 AFOSR-IFP Stanford Conference
- ➤ 1969 Compressible TBL, NASA SP-216
- ➤ 1972 Free shear flows, NASA SP-321
- ➤ 1980-81 AFOSR HTTM-Stanford Conference of complex turbulent flows: Comparison of Computation and experiments
- ➤ 1996 Bradshaw, Launder and Lumley's Olympics
- ≥2009 Starting of Turbulence Modeling Resources Website

Good Benchmark flows

- ➤ With distinct physical feature(s)
- ➤ Cannot be a one-point data
- > BC's well documented
- ➤ Insensitive to Re number
- ➤ High resilience to changes
 - Why it is important to look for resilient expression.

Cases Listing by Flow Physics

		Free shear flows		Wall flows		P- grad- ients	Curv- ature	Compressibility		Secon- dary flows	Turb Heat Flux	Higher Mach	Vortex flows	Shock	Separ- ation		
		Jet Anom- aly		Wakes	of	Law of wake			Mixing	Van Driest I	Van Driest II						
Boundary layers	2DZP*				Υ	Υ											
	2DZPH									Υ	Υ		Υ	Υ			
	ASBL*				Υ		weak										weak
Mixing layer/ wakes	2DML*		Y														
	2DANW*			Υ													
Jets	ASJ*	Υ															
	ANSJ*	Υ							Υ					Υ			
	AHSJ*	Υ											Υ				
	ACSSJ*	Y							Υ					Y			
	AHSSJ*	Υ							Υ				Υ	Υ			
Airfoils	2DN00*						Υ										weak
	2DN44						Υ										Y
Bump flows	ATB*						Υ							Υ		Υ	Y
	2DWMH						Υ										Y
Shock/boundary layer interaction flows	ASWBLI						Y						Y	Y		Y	Y
Internal flows	2DCC						Υ	Υ									
	2DBFS						strong										Y
	3DSSD						Υ					Y	Υ	Y			

ZPG flat plate boundary layer

- Incompressible flows
 - c_f vs. Re_θ u^+ vs. y^+

- Compressible flows
 - c_f , VD-II
 - Velocity and temperature transformation, VD-I, TL...
 - Pr₊
 - Use local properties

Free Shear Flows (round/plane jet anomaly)

Flow types	Spread parameter	Experimental data
Round jet	$dr_{1/2}/dx$	0.086-0.095
Plane Jet	$dy_{1/2}/dx$	0.100-0.110
Mixing layer	$d(y_{0.9}-y_{0.1})/dx$	0.115

Mach number effects on mixing layer compressibility effects

Curvature effects

Vortex flows

Well-documented BC's

Effects of Re on the law of the wall

Resilience of the Law of the wall

$$\frac{\partial u^{+}}{\partial y^{+}} = \frac{\tau / \tau_{w}}{\left(1 + \kappa y^{+} D_{\mu}\right) \beta} \text{ where } \beta = \frac{1 + \mu_{t} / \mu}{1 + \kappa y^{+} D_{\mu}}$$

BL with weak APG (no flow separation) Samuel-Joubert's experiment vs. SA solution

Progressive breakdown of LofW under weak APG

Driver's Axisymmetric (small) Separated BL (median APG)

Driver's Axisymmetric (small) Separated BL (median APG)

Driver's Axisymmetric (small) Separated BL (median APG)

Manchester's TBL separation from a rounded step

Johnson-Bachalo's Transonic shock/BL/separation

NACA 4412 Airfoil Trailing Edge Separation

Periodic hill

- DNS, Re=5,600
- ML, Re=5,600
- L-S $k \epsilon$, Re=5,600

- LES, Re=10,595
- SA, , Re=10,595

My wish lists

- Can ML be less dependent on geometry similarity of the training flows?
- ➤ How to extend to high Re #?➤ DNS (or LES) only offers low Re # training data.
- ➤ Can ML retain its memory (model's success is accumulative)?
- ➤ Can ML accommodate flow physics?
- Can ML satisfy asymptotic behaviors of the benchmark flows?
- >Slingshot effects and vortex flows deserve further attention.

Acknowledgement

- ➤ Members of TMR team for the monthly discussion
- ➤ Chris Rumsey, Brian Smith, Gary Coleman and Phillippe Spalart
- ➤ Xiang Yang and Heng Xiao for ML methods
- ➤ Dennis Johnson for discussion of flow separation/recovery
- ➤ Most of cases and their results are downloadable from TMR website.