Collaborative Testing Challenge

Michael Stoellinger, University of Wyoming

2022 Symposium on "Turbulence Modeling: Roadblocks, and the Potential for Machine Learning", Suffolk, VA, 27

July, 2022

1) Basic idea

• In a 2006 Physics of Fluids paper "A new methodology for Reynolds-averaged modeling based on the amalgamation of heuristic-modeling and turbulence-theory methods" Yoshizawa et al suggested using a synthesized time scale τ in several modeled terms (e.g. the

"slow-term")
$$\Phi_{ij,slow}^{h} = -\frac{C_{g1}}{\tau} \left(\tau_{ij} - \frac{1}{3} \tau_{kk} \delta_{ij} \right) \quad \frac{1}{\tau^{2}} = \frac{1}{\tau_{E}^{2}} + C_{S} \frac{1}{\tau_{S}^{2}} + C_{\Omega} \frac{1}{\tau_{\Omega}^{2}} + C_{AK} \frac{1}{\tau_{AK}^{2}} + C_{A\varepsilon} \frac{1}{\tau_{A\varepsilon}^{2}}$$

$$\tau_E = K/\varepsilon, \quad \tau_S = 1/\sqrt{S_{ij}^2}, \quad \tau_\Omega = 1/\sqrt{\Omega_{ij}^2}, \quad \tau_{AK} = 1/\sqrt{\left(\frac{1}{K}\frac{DK}{Dt}\right)^2} \quad \tau_{A\varepsilon} = 1/\sqrt{\left(\frac{1}{\varepsilon}\frac{D\varepsilon}{Dt}\right)^2}.$$

- They used this idea to derive an eddy viscosity $k-\varepsilon$ model and a "second order" EARSM
- Accounting for strain and rotation time scales, they obtained good results for some canonical flow (channel flow, rotating pipe, ...)

1) Basic idea

• They did not include a time scale based on $au_{dk}=rac{k}{D^k/Dt}$ although they state that this would be important for e.g. flow separation behind sharp steps

Idea: Include τ_{Ak} (and others) in the synthesized time scale expression

- Use it in a full RSM (accounting for near wall effects) to avoid loss of accuracy through EARSM assumptions
- RSM without near wall distance that can be used in HRLES
- Use data driven approach to find constants C_S , C_{Ak} , ...

- Use the elliptic blending RSM idea of Manceau & Hanjalic
- Further improve near wall behavior by using the homogenous dissipation rate to model the dissipation rate tenors (Stoellinger et al AIAA Paper 2015-2926)

$$\frac{\partial \tau_{ij}}{\partial t} + \overline{u}_j \frac{\partial \tau_{ij}}{\partial x_j} = P_{ij} + \Phi_{ij}^* - \varepsilon_{ij}^h + \frac{\partial}{\partial x_k} \left[\left(0.5\nu \delta_{kl} + C_k \frac{k}{\varepsilon^h} \tau_{kl} \right) \frac{\partial \tau_{ij}}{\partial x_l} \right],$$

$$\varepsilon^h = \varepsilon - 0.5\nu \frac{\partial^2 k}{\partial x_i x_i} \qquad \varepsilon_{ij}^h = (1 - f_\alpha) \frac{\tau_{ij}}{k} \varepsilon^h + f_\alpha \frac{2}{3} \varepsilon^h \delta_{ij}$$

Rationale: near wall anisotropy of dissipation tensor can be better modeled

Redistribution model (elliptic blending)

$$\Phi_{ij}^* = (1 - f_\alpha) \Phi_{ij}^w + f_\alpha \Phi_{ij}^h$$

near wall model

homogeneous model: e.g. SSG or LRR

blending function:
$$f_{\alpha} = \alpha^3$$

$$\alpha - L_d^2 \nabla^2 \alpha = 1$$

$$\alpha|_{wall} = 0$$
$$\alpha|_{\infty} = 1$$

with "Durbin" limited length scale

$$L_d = max\left(C_L \frac{k^{3/2}}{\varepsilon^h}, C_\eta \frac{\nu^{3/4}}{(\varepsilon^h)^{1/4}}\right)$$

Define "wall" normal vector
$$\vec{n} = \frac{\nabla \alpha}{\|\nabla \alpha\|}$$

Near wall model:

$$\Phi_{ij}^{w} = -5\frac{\varepsilon^{h}}{k} \left(\tau_{ik} n_{j} n_{k} + \tau_{jk} n_{i} n_{k} - \frac{1}{2} \tau_{kl} n_{k} n_{l} \left(n_{i} n_{j} + \delta_{ij} \right) \right)$$

Homogeneous Dissipation rate model:

$$\frac{\partial \varepsilon^{h}}{\partial t} + \overline{u}_{j} \frac{\partial \varepsilon^{h}}{\partial x_{j}} = C_{\varepsilon 1} P \frac{\varepsilon^{h}}{k} - C_{\varepsilon 2} f_{\varepsilon} \frac{\tilde{\varepsilon}^{h} \varepsilon^{h}}{k} + E_{\varepsilon} + \frac{\partial}{\partial x_{k}} \left[\left(0.5 \nu \delta_{kl} + C_{\varepsilon} \frac{k}{\varepsilon^{h}} \tau_{kl} \right) \frac{\partial \varepsilon^{h}}{\partial x_{l}} \right]$$

$$f_{\varepsilon} = 1 - \frac{C_{\varepsilon 2} - C_{\varepsilon 1}}{C_{\varepsilon 2}} \exp \left[- \left[(7\alpha)^{5} \right] \right]$$
Instead of $(Re_{t}/6)^{2}$

- Model implemented in OpenFOAM v2206
- Incompressible SIMPLEC based solver
- Under-relaxation for τ_{ij} and ε^h typically < 0.5
- Used TMR suggested inflow values for RSM models where available

Problematic behavior in 2D-ZPG found

- With the low free stream turbulence values, the near-wall (α values) region remains too thick
- Likely caused by use of L_d

$$L_d = max\left(C_L \frac{k^{3/2}}{\varepsilon^h}, C_\eta \frac{\nu^{3/4}}{(\varepsilon^h)^{1/4}}\right)$$

- Needed to turn off the limiter for $y^+ > 20$
- Brings back a geometrical near wall distance

3) 2D-ZPG results

Details

Finest grid level

2nd order upwind for divergence of momentum, 1st order upwind for turbulence terms. Gauss linear scheme for Laplacians, gradients and cell to face interpolation 0.012

4) Channel flow results

$$Re = 8 \cdot 10^6$$

- High aspect ratio problematic in OpenFOAM -> could not converge in parallel (tried different pressure solvers)
- Need to check if SST has the same problem

4) Channel flow results

 $Re_{\tau} = 4200$

5) NASA Hump

Grid 817x217

5) NASA Hump

Grid 817x217

6) NACA 0012

Grid 897x257

Lessons learned

- Struggled with instability in axi-symmetric jet case
 - Had similar experience with RSM models in OpneFOAM when applied in 2d axi-symmetric reacting jet flows
 - Neil Ashton got the model to work thoughs in the rotating pipe cae
- More complex cases initialized with SST model results
- Having this suite of test-case (including several grid levels) is great to test the consequence of modifications to turbulence models in a broad range of flows very quickly (Allrun script takes a few hours on a desktop)
- The wide range of discretization scheme choices in OpenFOAM can be a curse
 - When observing stability problems, it is tempting to just use more "bounded" numerics that might affect the results significantly