Spatial Model Aggregation (X-MA) of stochastic Explicit Algebraic Reynolds Stress models

Soufiane CHERROUD ¹ Xavier MERLE ¹ Paola CINNELLA ² Xavier GLOEFERLT ¹

¹ DynFluid Laboratory - Arts et Métiers Sciences & Technologies

²Institut Jean Le Rond d'Alembert, Sorbonne Université

2022 Symposium on Turbulence Modeling: Roadblocks, and the Potential for Machine Learning July 27, 2022

- 1 Introduction Context Our contribution
- 2 Learning of stochastic SBL-EARSM closures Reynolds stress representation Sparse Bayesian Learning (SBL) Spatial Model Aggregation (X-MA)
- Results
 Training flow cases
 Collaborative Testing Challenge

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - Based on local equilibrium assumptions + some empiricism
 - Complex coefficient expressions, numerical stiffness
 - No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

UDuraisamy, K., laccarino, G., and Xiao, H. (2019). *Annual Review of Fluid Mechanics*, 51:357–377

^[2] Xiao, H. and Cinnella, P. (2019). Progress in Aerospace Sciences, 108:1–31

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesg" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - Based on local equilibrium assumptions + some empiricism
 - Complex coefficient expressions, numerical stiffness
 - No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

Capuraisamy, K., Iaccarino, G., and Xiao, H. (2019). Annual Heview of Fluid Mechanics, 51:357–377

^[4] Xiao, H. and Cinnella, P. (2019). Progress in Aerospace Sciences, 108:1–31

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesg" analogy
- Non-linear corrections in the baseline LEVM
 - Mork well for a limited set of flow cases
 - Based on local equilibrium assumptions + some empiricism
 - Complex coefficient expressions, numerical stiffness
 - No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3

¹¹Duraisamy, K., laccarino, G., and Xiao, H. (2019). Annual Review of Fluid Mechanics, 51:357–377.

^[4] Xiao, H. and Cinnella, P. (2019). Progress in Aerospace Sciences, 108:1–31

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM
 - Work well for a limited set of flow case
 - Recod on local equilibrium accumptions a come empiriciem
 - Compley coefficient expressions numerical stiffness
 - Complex coefficient expressions, numerical stiffness
 - Mo information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - 2 Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - A No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

[3] Duraisamy, K. (2021). Physical Review Fluids, 6:050504

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - A No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

^{4 0 + 4 0 + 4 = + 4 = + 3 = 90}

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - 2 Based on local equilibrium assumptions + some empiricism
 - Complex coefficient expressions, numerical stiffness
 - A No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - 2 Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - A No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

⁴ D > 4 B > 4 B > 4 B > B B B 9 9 9

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - 2 Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - 2 Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - 4 No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Development of ML-augmented turbulence mode

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases

July 27, 2022

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

- RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering, design and optimisation
 - + Simplicity, low cost, robustness
 - Low fidelity
- Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq" analogy
- Non-linear corrections in the baseline LEVM:
 - Work well for a limited set of flow cases
 - Based on local equilibrium assumptions + some empiricism
 - 3 Complex coefficient expressions, numerical stiffness
 - No information about uncertainties
- Choice of a 'best' turbulence model often based on 'expert judgement'
- Recent trends:
 - Increasing availability of high-Fidelity databases
 - Development of ML-augmented turbulence models [1][2] [3]

^[1] Duraisamy, K., Jaccarino, G., and Xiao, H. (2019). Annual Review of Fluid Mechanics, 51:357-377

^[2] Xiao, H. and Cinnella, P. (2019), Progress in Aerospace Sciences, 108:1-31

^[3] Duraisamy, K. (2021). Physical Review Fluids, 6:050504

- $\rightarrow\,$ Learn customized non linear eddy viscosity models for selected flow classes:
 - Stochastic (equipped with measure of uncertainty)
 - Physically interpretable
 - Sparse (less complex, more robust, less likely to overfit)
- → Automatically combine these customized models to yield predictions better than LEVM throughout the flows of the Collaborative Testing Challenge

- Learn customized non linear eddy viscosity models for selected flow classes:
 - Stochastic (equipped with measure of uncertainty)
 - Physically interpretable
 - Sparse (less complex, more robust, less likely to overfit)
- → Automatically combine these customized models to yield predictions better than LEVM throughout the flows of the Collaborative Testing Challenge

- Learn customized non linear eddy viscosity models for selected flow classes:
 - · Stochastic (equipped with measure of uncertainty)
 - Physically interpretable
 - Sparse (less complex, more robust, less likely to overfit)
- → Automatically combine these customized models to yield predictions better than LEVM throughout the flows of the Collaborative Testing Challenge

- Learn customized non linear eddy viscosity models for selected flow classes:
 - Stochastic (equipped with measure of uncertainty)
 - Physically interpretable
 - Sparse (less complex, more robust, less likely to overfit)
- → Automatically combine these customized models to yield predictions better than LEVM throughout the flows of the Collaborative Testing Challenge

- Learn customized non linear eddy viscosity models for selected flow classes:
 - · Stochastic (equipped with measure of uncertainty)
 - Physically interpretable
 - · Sparse (less complex, more robust, less likely to overfit)
- \to Automatically combine these customized models to yield predictions better than LEVM throughout the flows of the Collaborative Testing Challenge

High-fidelity data: $U, k, au_{ij}, \omega_{frozen}$

^[4] Schmelzer, M., Dwight, R. P., and Cinnella, P. (2020). Flow, Turbulence and Combustion, 104(2):579-603

^[5] Pope, S. (1975). Journal of Fluid Mechanics, 72(2):331-340

^[4] Schmelzer, M., Dwight, R. P., and Cinnella, P. (2020). Flow, Turbulence and Combustion, 104(2):579-603

^[5] Pope, S. (1975). Journal of Fluid Mechanics, 72(2):331-340

^[4] Schmelzer, M., Dwight, R. P., and Cinnella, P. (2020). Flow, Turbulence and Combustion, 104(2):579-603

^[5] Pope, S. (1975). Journal of Fluid Mechanics, 72(2):331-340

^[4] Schmelzer, M., Dwight, R. P., and Cinnella, P. (2020). Flow, Turbulence and Combustion, 104(2):579-603

^[5] Pope, S. (1975). Journal of Fluid Mechanics, 72(2):331-340

^[4] Schmelzer, M., Dwight, R. P., and Cinnella, P. (2020). Flow, Turbulence and Combustion, 104(2):579-603

^[5] Pope, S. (1975). Journal of Fluid Mechanics, 72(2):331–340

$$\boxed{t(x;w) = \Phi(x)w + \boxed{\epsilon}}$$

$$t(x; w) = \Phi(x)w + \boxed{\epsilon} - \cdots - \cdots \rightarrow \boxed{\sim \mathcal{N}(0, \sigma^2 I)}$$

$$\underbrace{t(x; w) = \Phi(x)w + \left[\epsilon\right]}_{\bullet} - - - - - \bullet \left[\sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}) \right] \\
\mathcal{L}_{\mathcal{I}}(w) = \log p(t|w, \sigma^2)$$

$$\underbrace{ t(x; w) = \Phi(x)w + \boxed{\epsilon} }_{\text{c}} - - - - - - \leftarrow} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\underbrace{ \mathcal{L}_{\mathcal{I}}(w) = \log p(\mathbf{t}|w, \sigma^2) }_{\text{e}} \text{severe overfitting!!}$$

$$t(x; w) = \Phi(x)w + \epsilon$$

$$p(w|\alpha) = \prod_{i=1}^{M} \mathcal{N}(0, \frac{1}{\alpha_i})$$

$$t(x; w) = \Phi(x)w + \epsilon$$
 $\sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$

$$p(\mathbf{w}|\alpha) = \prod_{i=1}^{M} \mathcal{N}(0, \frac{1}{\alpha_i})$$

$$p(\alpha) = \prod_{i=1}^{M} \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_i})$$

^aTipping, M. E. (2001). Journal of machine learning research, 1(Jun):211–244

$$t(x; w) = \Phi(x)w + \boxed{\epsilon}$$
 $\sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

$$p(\mathbf{w}|\boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(0, \frac{1}{\alpha_i})$$

$$p(\alpha) = \prod_{i=1}^{M} \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_i})$$

 $p(\sigma^2)$ uninformative

$$\boxed{ \begin{aligned} & t(\pmb{x};\pmb{w}) = \Phi(\pmb{x})\pmb{w} + \boxed{\pmb{\epsilon}} \\ ----- & \sim \mathcal{N}(\pmb{0},\sigma^2\pmb{I}) \end{aligned} } \\ & \boxed{ \begin{aligned} & p(\pmb{w}|\pmb{\alpha}) = \prod_{i=1}^M \mathcal{N}(0,\frac{1}{\alpha_i}) \\ & p(\pmb{\alpha}) = \prod_{i=1}^M \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_i}) \end{aligned} } \\ & \boxed{ \begin{aligned} & p(\sigma^2) \text{ uninformative} \end{aligned} }$$

$$\boxed{ \begin{aligned} & t(\pmb{x};\pmb{w}) = \Phi(\pmb{x})\pmb{w} + \boxed{\pmb{\epsilon}} \\ & p(\pmb{w}|\pmb{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(0,\frac{1}{\alpha_i}) \\ & p(\pmb{\alpha}) = \prod_{i=1}^{M} \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_i}) \end{aligned}}$$
 Bayes rule
$$\boxed{ \begin{aligned} & p(\pmb{w}|\pmb{t},\pmb{\alpha},\pmb{\sigma^2}) \sim \mathcal{N}(\pmb{\mu},\pmb{\Sigma}) \\ & p(\sigma^2) \text{ uninformative} \end{aligned}}$$

$$\boxed{ \begin{aligned} & t(\pmb{x};\pmb{w}) = \Phi(\pmb{x})\pmb{w} + \boxed{\pmb{\epsilon}} \\ & - \cdots \\ & \sim \mathcal{N}(\pmb{0},\sigma^2\pmb{I}) \end{aligned} } \\ & p(\pmb{w}|\pmb{\alpha}) = \prod_{i=1}^M \mathcal{N}(0,\frac{1}{\alpha_i}) \\ & p(\pmb{\alpha}) = \prod_{i=1}^M \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_i}) \end{aligned} } \\ & p(\pmb{w}|\pmb{t},\boxed{\pmb{\alpha},\sigma^2}) \sim \mathcal{N}(\pmb{\mu},\pmb{\Sigma}) \\ & p(\sigma^2) \text{ uninformative} \end{aligned} }$$

$$\boxed{ \begin{aligned} f(\pmb{x};\pmb{w}) &= \Phi(\pmb{x})\pmb{w} + \boxed{\pmb{\epsilon}} \\ \hline p(\pmb{w}|\pmb{\alpha}) &= \prod_{i=1}^{M} \mathcal{N}(0,\frac{1}{\alpha_i}) \\ \hline p(\pmb{\alpha}) &= \prod_{i=1}^{M} \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_i}) \\ \hline p(\sigma^2) \text{ uninformative} \end{aligned}} \qquad \boxed{ \begin{aligned} p(\pmb{w}|\pmb{t}, \boxed{\pmb{\alpha}, \pmb{\sigma}^2}) &\sim \mathcal{N}(\pmb{\mu}, \pmb{\Sigma}) \\ \hline p(\pmb{\sigma}^2) &= \log p(\pmb{t}|\pmb{\alpha}, \pmb{\sigma}^2) \\ \hline \max_{\alpha,\sigma^2} (\mathcal{L}_{\mathcal{I}\mathcal{I}}(\pmb{\alpha}, \pmb{\sigma}^2)) \\ \hline \alpha_{\textit{MP}}, \sigma_{\textit{MP}}^2 \end{aligned}}$$

$$\begin{array}{c} \boxed{t(x;w) = \Phi(x)w + \boxed{\epsilon}} \\ \hline \\ p(w|\alpha) = \prod_{i=1}^{M} \mathcal{N}(0,\frac{1}{\alpha_{i}}) \\ \hline \\ p(\alpha) = \prod_{i=1}^{M} \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_{i}}) \\ \hline \\ p(\sigma^{2}) \text{ uninformative} \\ \hline \\ \hline \\ \hline \\ max_{\alpha,\sigma^{2}}(\mathcal{L}_{TT}(\alpha,\sigma^{2})) \\ \hline \\ \hline \\ remove \ (w_{MP})_{i}, \ (\alpha_{MP})_{i} \\ \hline \end{array}$$

$$f(x;w) = \Phi(x)w + \underbrace{\epsilon} \qquad \sim \mathcal{N}(\mathbf{0},\sigma^2 \mathbf{I})$$

$$p(w|\alpha) = \prod_{i=1}^{M} \mathcal{N}(0,\frac{1}{\alpha_i})$$

$$p(\alpha) = \prod_{i=1}^{M} \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_i})$$

$$p(\sigma^2) \text{ uninformative}$$

$$\mathcal{L}_{\mathcal{I}\mathcal{I}}(\alpha,\sigma^2) = \log p(\mathbf{t}|\alpha,\sigma^2)$$

$$\max_{\alpha,\sigma^2}(\mathcal{L}_{\mathcal{I}\mathcal{I}}(\alpha,\sigma^2))$$

$$\text{update } (w_{MP})_i \xrightarrow{\text{no}} (\alpha_{MP})_i > \alpha_{lim}? \qquad \text{for every i} \qquad \alpha_{MP},\sigma_{MP}^2$$

$$\text{yes}$$

$$\text{remove } (w_{MP})_i, (\alpha_{MP})_i$$

$$\begin{array}{c} \textbf{\textit{f}}(\textbf{\textit{x}};\textbf{\textit{w}}) = \Phi(\textbf{\textit{x}})\textbf{\textit{w}} + \boxed{\epsilon} \\ \hline \\ p(\textbf{\textit{w}}|\alpha) = \prod_{i=1}^{M} \mathcal{N}(0,\frac{1}{\alpha_{i}}) \\ \hline \\ p(\alpha) = \prod_{i=1}^{M} \frac{\lambda}{2} \exp(-\frac{\lambda}{2\alpha_{i}}) \\ \hline \\ p(\sigma^{2}) \text{ uninformative} \\ \hline \\ \textbf{\textit{wax}}_{\alpha,\sigma^{2}}(\mathcal{L}_{\mathcal{I}\mathcal{I}}(\alpha,\sigma^{2})) \\ \hline \\ \text{\textit{update }}(w_{MP})_{i} \xrightarrow{\text{no}} \alpha_{MP}, \sigma_{MP}^{2} \\ \hline \\ \text{\textit{yes}} \\ \hline \\ \text{\textit{remove }}(w_{MP})_{i}, (\alpha_{MP})_{i} \\ \hline \end{array}$$

SBL - Uncertainty Quantification

Let us consider K SBL-EARSM models, learned in different environments. We aggregate their individual solutions d_k to produce robust predictions of new flows

Mixture of Experts: Exponentially Weighted Average (EWA) of models

$$w_k(\delta^k; \bar{\delta}; \sigma_w) = \frac{g_k(\delta^k; \delta; \sigma_w)}{\sum_{l=1}^K g_l(\delta^l; \bar{\delta}; \sigma_w)}$$
(1)

where:

- $\bar{\delta}$ is a vector of high-fidelity data
- δ^k is a vector of the k^{th} individual model predictions for $\bar{\delta}$ (Nota: $\delta^k \neq d_k$!)
- σ_w is a hyperparameter
- g_m is a cost function of the form

$$g_k(\delta^k; \bar{\delta}; \sigma_w) = \exp\left(-\frac{1}{2} \frac{(\delta^k - \bar{\delta})^T \cdot (\delta^k - \bar{\delta})}{\sigma_w^2}\right)$$
 (2)

• The aggregated prediction of quantity d writes:

$$d_{MA} = \sum_{k=1}^{K} w_k d_k \tag{3}$$

8/24

Let us consider K SBL-EARSM models, learned in different environments. We **aggregate** their individual solutions d_k to produce robust predictions of new flows

• Mixture of Experts: Exponentially Weighted Average (EWA) of models

$$w_k(\delta^k; \bar{\delta}; \sigma_w) = \frac{g_k(\delta^k; \bar{\delta}; \sigma_w)}{\sum_{l=1}^K g_l(\delta^l; \bar{\delta}; \sigma_w)}$$
(1)

where:

- $\bar{\delta}$ is a vector of high-fidelity data
- δ^k is a vector of the k^{th} individual model predictions for $\bar{\delta}$ (Nota: $\delta^k \neq d_k$!)
- σ_w is a hyperparameter
- g_m is a cost function of the form

$$g_k(\delta^k; \bar{\delta}; \sigma_w) = \exp\left(-\frac{1}{2} \frac{(\delta^k - \bar{\delta})^T \cdot (\delta^k - \bar{\delta})}{\sigma_w^2}\right)$$
 (2)

• The aggregated prediction of quantity *d* writes:

$$d_{MA} = \sum_{k=1}^{K} w_k d_k \tag{3}$$

Let us consider K SBL-EARSM models, learned in different environments. We **aggregate** their individual solutions d_k to produce robust predictions of new flows

• Mixture of Experts: Exponentially Weighted Average (EWA) of models

$$w_k(\delta^k; \bar{\delta}; \sigma_w) = \frac{g_k(\delta^k; \delta; \sigma_w)}{\sum_{l=1}^K g_l(\delta^l; \bar{\delta}; \sigma_w)}$$
(1)

where:

- $\bar{\delta}$ is a vector of high-fidelity data
- δ^k is a vector of the k^{th} individual model predictions for $\bar{\delta}$ (Nota: $\delta^k \neq d_k$!)
- σ_w is a hyperparameter
- g_m is a cost function of the form

$$g_k(\delta^k; \bar{\delta}; \sigma_w) = \exp\left(-\frac{1}{2} \frac{(\delta^k - \bar{\delta})^T \cdot (\delta^k - \bar{\delta})}{\sigma_w^2}\right) \tag{2}$$

• The aggregated prediction of quantity *d* writes:

$$d_{MA} = \sum_{k=1}^{K} w_k d_k \tag{3}$$

July 27, 2022

8/24

Let us consider K SBL-EARSM models, learned in different environments. We **aggregate** their individual solutions d_k to produce robust predictions of new flows

Mixture of Experts: Exponentially Weighted Average (EWA) of models

$$w_k(\delta^k; \bar{\delta}; \sigma_w) = \frac{g_k(\delta^k; \delta; \sigma_w)}{\sum_{l=1}^K g_l(\delta^l; \bar{\delta}; \sigma_w)}$$
(1)

where:

- $\bar{\delta}$ is a vector of high-fidelity data
- δ^k is a vector of the k^{th} individual model predictions for $\bar{\delta}$ (Nota: $\delta^k \neq d_k$!)
- σ_w is a hyperparameter
- g_m is a cost function of the form

$$g_k(\delta^k; \bar{\delta}; \sigma_w) = \exp\left(-\frac{1}{2} \frac{(\delta^k - \delta)^T \cdot (\delta^k - \delta)}{\sigma_w^2}\right)$$
(2)

• The aggregated prediction of quantity *d* writes:

$$d_{MA} = \sum_{k=1}^{K} w_k d_k \tag{3}$$

Let us consider K SBL-EARSM models, learned in different environments. We **aggregate** their individual solutions d_k to produce robust predictions of new flows

• Mixture of Experts: Exponentially Weighted Average (EWA) of models

$$w_k(\delta^k; \bar{\delta}; \sigma_w) = \frac{g_k(\delta^k; \delta; \sigma_w)}{\sum_{l=1}^K g_l(\delta^l; \bar{\delta}; \sigma_w)}$$
(1)

where:

- $\bar{\delta}$ is a vector of high-fidelity data
- δ^k is a vector of the k^{th} individual model predictions for $\bar{\delta}$ (Nota: $\delta^k \neq d_k$!)
- σ_w is a hyperparameter
- g_m is a cost function of the form

$$g_k(\delta^k; \bar{\delta}; \sigma_w) = \exp\left(-\frac{1}{2} \frac{(\delta^k - \bar{\delta})^T \cdot (\delta^k - \bar{\delta})}{\sigma_w^2}\right)$$
(2)

• The aggregated prediction of quantity *d* writes:

$$d_{MA} = \sum_{k=1}^{K} w_k d_k \tag{3}$$

8/24

Let us consider K SBL-EARSM models, learned in different environments. We **aggregate** their individual solutions d_k to produce robust predictions of new flows

Mixture of Experts: Exponentially Weighted Average (EWA) of models

$$w_k(\delta^k; \bar{\delta}; \sigma_w) = \frac{g_k(\delta^k; \delta; \sigma_w)}{\sum_{l=1}^K g_l(\delta^l; \bar{\delta}; \sigma_w)}$$
(1)

where:

- $\bar{\delta}$ is a vector of high-fidelity data
- δ^k is a vector of the k^{th} individual model predictions for $\bar{\delta}$ (Nota: $\delta^k \neq d_k$!)
- σ_w is a hyperparameter
- g_m is a cost function of the form

$$g_k(\delta^k; \bar{\delta}; \sigma_w) = \exp\left(-\frac{1}{2} \frac{(\delta^k - \bar{\delta})^T \cdot (\delta^k - \bar{\delta})}{\sigma_w^2}\right)$$
(2)

• The aggregated prediction of quantity *d* writes:

$$d_{MA} = \sum_{k=1}^{K} w_k d_k \tag{3}$$

X-MA

MA: constant weights do not account for "regional" model behavior X-MA: 'local' and 'physics-aware' aggregation:

$$\underbrace{\eta(\mathbf{x}) = (\eta_1(x), ..., \eta_{10}(x))}_{\text{local flow features}} \xrightarrow{CART} \underbrace{\left(w_1(\delta^1(x); \bar{\delta}(x); \sigma_w), ..., w_K(\delta^K(x); \bar{\delta}(x); \sigma_w))\right)}_{\text{local models weights}} \tag{4}$$

 $d_{X-MA}(x) = \sum_{k=1}^{K} W_k(\eta(\mathbf{x}); \sigma_w) d_k(x)$ (5)

Feature	Description	Formula	Feature	Description	Formula
η_1	Normalized Q criterion	$\frac{ \Omega ^2 - S ^2}{ \Omega ^2 + S ^2}$	η_6	Viscosity ratio	$\frac{\nu_T}{100\nu + \nu_T}$
η_2	Turbulence intensity	$\frac{k}{0.5U_iU_i+k}$	ητ	Ratio of pressure normal stresses to normal shear stresses	$\frac{\sqrt{\frac{\partial P}{\partial x_i}\frac{\partial P}{\partial x_i}}}{\sqrt{\frac{\partial P}{\partial x_j}\frac{\partial P}{\partial x_j}} + 0.5\rho\frac{\partial U_k^2}{\partial x_k}}$
η_3	Turbulent Reynolds number	$\min\left(\frac{\sqrt{k}\lambda}{50\nu},2\right)$	η_8	Non-orthogonality marker between velocity and its gradient [28]	$\frac{\left U_{k}U_{l}\frac{\partial U_{k}}{\partial x_{l}}\right }{\sqrt{U_{n}U_{n}U_{i}\frac{\partial U_{i}}{\partial x_{j}}U_{m}\frac{\partial U_{m}}{\partial x_{j}}}+\left U_{i}U_{j}\frac{\partial U_{i}}{\partial x_{j}}\right }$
η_4	Pressure gradient along streamline	$\frac{U_k \frac{\partial P}{\partial x_k}}{\sqrt{\frac{\partial P}{\partial x_j} \frac{\partial P}{\partial x_j} U_l U_l + \left U_l \frac{\partial P}{\partial x_l} \right }}$	η_9	Ratio of convection to production of k	$\frac{U_i \frac{\partial k}{\partial x_i}}{ u_j' u_l' S_{jl} + U_l \frac{\partial k}{\partial x_l}}$
η_5	Ratio of turbulent time scale to mean strain time scale	$\frac{ \mathbf{S} k}{ \mathbf{S} k+\varepsilon}$	η_{10}	Ratio of total Reynolds stresses to normal Reynolds stresses	$\frac{ \overline{u_i'u_j'} }{k+ \overline{u_i'u_j'} }$

Training Data

Ref	case	Data	
D_1	ZPG-TBL	DNS of turbulent boundary layer, $670 \le Re_{\theta} \le 4060^{[7]}$	
D_2	FDC	DNS of turbulent channel flow, $180 \le Re_{\tau} \le 590^{[8]}$	
D_3	ANSJ	PIV of near sonic axisymmetric jet [9]	
D_4	APG	LES of adverse pressure-gradient TBL [10]	
		$Re_{\theta} \leq 4000, \beta = 4, 5 \text{different pressure gradients}$	
D_5	SEP	LES of Periodic Hills at Re=10595 [11]	
		DNS of converging-diverging channel at Re=13600 [12]	
		LES of curved backward facing step at Re = 13700 [13]	
D_6	N4412	LES of NACA4412 at $\alpha = 5$, $Re_c = 10^5, 2.10^5, 4.10^5, 10^6$ [14]	

- SBL-EARSM models are infered using Reynolds stress data
- The aggregation of models is using streamwise velocity data

^[7] Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Johansson, A. V., Alfredsson, P. H., and Henningson, D. S. (2011). In Seventh International Symposium on Turbulence and Shear Flow Phenomena. Begel House Inc

^[8] Moser, R. D., Kim, J., and Mansour, N. N. (1999). Physics of fluids, 11(4):943–945

^[9] Bridges, J. and Wernet, M. (2010). In 16th AIAA/CEAS aeroacoustics conference, page 3751

^[10] Bobke, A., Vinuesa, R., Örlü, R., and Schlatter, P. (2017). Journal of Fluid Mechanics, 820:667–692

^[11] Breuer, M., Peller, N., Rapp, C., and Manhart, M. (2009). Computers & Fluids, 38(2):433–457

^[12] Laval, J.-P. and Marquillie, M. (2011). In Progress in wall turbulence: understanding and modeling, pages 203–209. Springer

^[13] Bentaleb, Y., Lardeau, S., and Leschziner, M. A. (2012). Journal of Turbulence, (13):N4

^[14] Vinuesa, R., Negi, P. S., Atzori, M., Hanifi, A., Henningson, D. S., and Schlatter, P. (2018). International Journal of Heat and Fluid Flow 72:86-99 🔗 🔾 🦠

Case 2DZP: zero pressure boundary layer

Figure 2: u^+ vs. $log(y^+)$

Figure 3: C_f vs. x

Case 2DFDC: Fully-developed channel flow

Figure 4: u^+ vs. $log(y^+)$

Case 2DWMH: Wall-Mounted Hump

Figure 5: C_p vs. x

Figure 6: C_f vs. x

Case 2DWMH: Wall-Mounted Hump

Figure 7: Streamwise velocity ${\it U}$ at different streamwise stations

Case 2DWMH: Wall-Mounted Hump

Figure 8: Reynolds shear stress τ_{xy} at different streamwise stations

Case ASJ: Axisymmetric Subsonic Jet

Figure 9: Streamwise velocity along symmetry axis

Case ASJ: Axisymmetric Subsonic Jet

Figure 10: Streamwise velocity U along symmetry axis

Case ASJ: Axisymmetric Subsonic Jet

Figure 11: Reynolds shear stress τ_{xy} at different stations along x

Figure 12: C_D vs. C_L

Figure 13: C_p vs. x (left) and C_f vs. x (right) at $\alpha = 10^{\circ}$

Figure 14: C_p vs. x (left) and C_f vs. x (right) at $\alpha = 15^{\circ}$

Figure 15: C_p vs. x (left) and C_f vs. x (right) at $\alpha = 17^{\circ}$

Figure 16: C_p vs. x (left) and C_f vs. x (right) at $\alpha = 18^{\circ}$

- We presented a Sparse Bayesian Learning (SBL) approach for discovering non linear corrections of LEVM with stochastic model parameters
- We explored a method for aggregating, in a 'local' and 'physics-aware' manner, predictions of SBL-EARSM models
- X-MA provides estimates of (parametric + model form) uncertainty
- → Future work
 - Derive customized SBL-EARSM for other flow classes
 - Relax limitations intrinsic to Pope's representation
- Improve model aggregation algorithm to avoid unphysical wiggles and to return to baseline model for flow regions far apart the training sets

- We presented a Sparse Bayesian Learning (SBL) approach for discovering non linear corrections of LEVM with stochastic model parameters
- We explored a method for aggregating, in a 'local' and 'physics-aware' manner, predictions of SBL-EARSM models
- X-MA provides estimates of (parametric + model form) uncertainty
- → Future work
 - Derive customized SBL-EARSM for other flow classes
 - Relax limitations intrinsic to Pope's representation
- Improve model aggregation algorithm to avoid unphysical wiggles and to return to baseline model for flow regions far apart the training sets

- We presented a Sparse Bayesian Learning (SBL) approach for discovering non linear corrections of LEVM with stochastic model parameters
- We explored a method for aggregating, in a 'local' and 'physics-aware' manner, predictions of SBL-EARSM models
- X-MA provides estimates of (parametric + model form) uncertainty
- → Future work
 - Derive customized SBL-EARSM for other flow classes
 - Relax limitations intrinsic to Pope's representation
- Improve model aggregation algorithm to avoid unphysical wiggles and to return to baseline model for flow regions far apart the training sets

- We presented a Sparse Bayesian Learning (SBL) approach for discovering non linear corrections of LEVM with stochastic model parameters
- We explored a method for aggregating, in a 'local' and 'physics-aware' manner, predictions of SBL-EARSM models
- X-MA provides estimates of (parametric + model form) uncertainty
- → Future work:
 - Derive customized SBL-EARSM for other flow classes
 - Relax limitations intrinsic to Pope's representation
- Improve model aggregation algorithm to avoid unphysical wiggles and to return to baseline model for flow regions far apart the training sets

- We presented a Sparse Bayesian Learning (SBL) approach for discovering non linear corrections of LEVM with stochastic model parameters
- We explored a method for aggregating, in a 'local' and 'physics-aware' manner, predictions of SBL-EARSM models
- X-MA provides estimates of (parametric + model form) uncertainty
- → Future work:
 - Derive customized SBL-EARSM for other flow classes
 - Relax limitations intrinsic to Pope's representation
- Improve model aggregation algorithm to avoid unphysical wiggles and to return to baseline model for flow regions far apart the training sets

- We presented a Sparse Bayesian Learning (SBL) approach for discovering non linear corrections of LEVM with stochastic model parameters
- We explored a method for aggregating, in a 'local' and 'physics-aware' manner, predictions of SBL-EARSM models
- X-MA provides estimates of (parametric + model form) uncertainty
- → Future work:
 - Derive customized SBL-EARSM for other flow classes
 - Relax limitations intrinsic to Pope's representation
- Improve model aggregation algorithm to avoid unphysical wiggles and to return to baseline model for flow regions far apart the training sets

- We presented a Sparse Bayesian Learning (SBL) approach for discovering non linear corrections of LEVM with stochastic model parameters
- We explored a method for aggregating, in a 'local' and 'physics-aware' manner, predictions of SBL-EARSM models
- X-MA provides estimates of (parametric + model form) uncertainty
- → Future work:
 - Derive customized SBL-EARSM for other flow classes
 - Relax limitations intrinsic to Pope's representation
 - Improve model aggregation algorithm to avoid unphysical wiggles and to return to baseline model for flow regions far apart the training sets

SBL-EARSM models of training flow cases

Training set	Model		
(ZPG-TBL)	$\begin{cases} \mathbf{M}_{\mathbf{b}^{\Delta}}^{(1)} = & [(-0.264 \pm 0.1263) + (2.61 \pm 4.55)(I_1 - I_2) + \\ & (-6.19 \pm 12.3)(I_1^2 - I_2^2) + (4.89 \pm 10.0)(I_1^3 - I_2^3)]\mathbf{T}^{(1)} \\ & \pm 0.1647 \end{cases}$ $\mathbf{M}_{\mathbf{b}^{R}}^{(1)} = & [(0.198 \pm 0.0245)I_1^2 + (-0.362 \pm 0.0562)(I_1^3 - I_2^3) + \\ & (3.25 \pm 0.449)(I_1^7 - I_2^7) + (3.13 \pm 0.589)I_1^8 + \\ & + (-0.198 \pm 0.449)I_1I_2]\mathbf{T}^{(1)} \pm 0.00045 \end{cases}$		
(FDC)	$\begin{cases} \mathbf{M}_{\mathbf{b}^{\Delta}}^{(2)} = & [(0.168 \pm 0.0886)]\mathbf{T}^{(1)} \pm 0.893 \\ \mathbf{M}_{\mathbf{b}^{R}}^{(2)} = & [(3.21 \pm 0.361) + (-2.88 \pm 1.24)(I_{1}^{3} - I_{2}^{3}) + \\ & (-0.176 \pm 0.32)(I_{1}^{9} - I_{2}^{9})]\mathbf{T}^{(3)} \pm 0.00337) \end{cases}$		
(ANSJ)	$\begin{cases} \mathbf{M}_{\mathbf{b}^{\Delta}}^{(3)} = & [(0)] \pm 0.00863 \\ \mathbf{M}_{\mathbf{b}^{R}}^{(3)} = & [(-0.35 \pm 0.0143)]\mathbf{T}^{(1)} + [(-38.476 \pm 2.16)]\mathbf{T}^{(3)} \\ & \pm 0.00241 \end{cases}$		

$${f T}^{(1)} = rac{1}{\omega} S, {f T}^{(2)} = rac{1}{\omega^2} \left(S\Omega - \Omega S
ight) {
m and } {f T}^{(3)} = rac{1}{\omega^2} \left(S^2 - rac{1}{3} Tr(S^2) I
ight), \quad {
m Tr} = 1$$

SBL-EARSM models of training flow cases

Training set	Model		
(APG)	$\begin{cases} \mathbf{M}_{\mathbf{b}^{\Delta}}^{(4)} = & [(0.477 \pm 0.259)]\mathbf{T}^{(1)} \pm 0.000626 \\ \mathbf{M}_{\mathbf{b}^{R}}^{(4)} = & [(-0.12 \pm 0.0206) + (0.918 \pm 0.332)(I_{1} - I_{2})]\mathbf{T}^{(1)} \\ & \pm 0.0000176 \end{cases}$		
(SEP)	$\begin{cases} \mathbf{M}_{\mathbf{b}^{\Delta}}^{(5)} = [(0)] \pm 0.00669 \\ \mathbf{M}_{\mathbf{b}^{R}}^{(5)} = [(0.382 \pm 0.0184)] \mathbf{T}^{(1)} \pm 0.0385 \end{cases}$		
(N4412)	$\begin{cases} \mathbf{M}_{\mathbf{b}^{\Delta}}^{(6)} = & [(-0.39 \pm 0.000214)]\mathbf{T}^{(1)} + [(7.00 \pm 0.00169)]\mathbf{T}^{(2)} + \\ & [(6.00 \pm 0.038)]\mathbf{T}^{(3)} \pm 0.000626 \\ \mathbf{M}_{\mathbf{b}^{R}}^{(6)} = & [(0)] \pm 0.00011 \end{cases}$		

$$\mathbf{T}^{(1)}=rac{1}{\omega}\mathit{S}, \mathbf{T}^{(2)}=rac{1}{\omega^2}\left(\mathit{S}\Omega-\Omega\mathit{S}
ight)$$
 and $\mathbf{T}^{(3)}=rac{1}{\omega^2}\left(\mathit{S}^2-rac{1}{3}\mathit{Tr}(\mathit{S}^2)\mathit{I}
ight)$

Model Aggregation (MA) Ingredients

- Let:
 - ullet a random variable referring to the generic 'non-inferred' model coefficients
 - D^{Calib} a random variable refering to the high-fidelity training data set
- With the SBL framework, we have:

$$\theta|D_k^{Calib} \Leftrightarrow \theta_k^{SBL}|D_k^{Calib}, M_k \tag{6}$$

where:

- *M* a random variable refering to the infered form of the SBL correction
- θ^{SBL} a random variable referinf to the infered model coefficients under the model form M
- We use high-fidelity velocity data to evaluate the relevance of the derived models to each other:
 - D^{Eval} high-fidelity velocity data used to calculate models' weights

Model Aggregation (MA) formulation

We want to make predictions on an unseen quantity d_t:

$$p(d_t|D^{Eval}) = \sum_{k=1}^{K} p(d_t, D_k^{Calib}|D^{Eval})$$
(7)

$$=\sum_{k=1}^{K}\int p(d_{t},D_{k}^{Calib},\theta|D^{Eval})d\theta \tag{8}$$

$$=\sum_{k=1}^{K}\int p(d_t,\theta_k^{SBL},M_k,D_k^{Calib}|D^{Eval})d\theta_k^{SBL}$$
(9)

$$p(d_t|D^{Eval}) = \sum_{k=1}^{K} \underbrace{p(M_k, D_k^{Calib}|D^{Eval})}_{model-probability} \int \underbrace{p(d_t|M_k, D_k^{Calib}, \theta_k^{SBL})}_{likelihood} \underbrace{p(\theta_k^{SBL}|M_k, D_k^{Calib})}_{posterior} d\theta_k^{SBL}$$
(10)

• $p(M_k, D_k^{Calib}|D^{Eval})$ can be calculated using Bayes' theorem:

$$p(M_k, D_k^{Calib}|D^{Eval}) = \frac{p(D^{Eval}|M_k, D_k^{Calib})}{\sum_{l=1}^{K} p(D^{Eval}|M_l, D_l^{Calib})}$$
(11)

Spatial Model Aggregation (X-MA)

- We want to make the probability of every model sensitive to local flow features:
 - We train a CART to identify clusters in the flow and learn the weights of every model using local flow features
 - Every cluster gives a convex combinaison of the models' weights

$$\eta(\vec{x}) = (\eta_1(x), ..., \eta_{10}(x)) \xrightarrow{CART} \left(p(M_1, D_1^{Calib} | D^{Eval}(x)), ..., p(M_K, D_K^{Calib} | D^{Eval}(x)) \right)$$

The X-MA writes:

$$p(d_t(x)|D^{Eval}) = \sum_{k=1}^K w(\boldsymbol{\eta}(\boldsymbol{x}))_k \int p(d_t|M_k, D_k^{Calib}, \theta_k^{SBL}) p(\theta_k^{SBL}|M_k, D_k^{Calib}) d\theta_k^{SBL}$$

We can proove that:

$$E(d_t(x)|D^{Eval}) = \sum_{k=1}^{K} w(\boldsymbol{\eta}(\boldsymbol{x}))_k E(d_t|M_k, D_k^{Calib})$$
(12)

$$Var(d_t(x)|D^{Eval}) = \sum_{k=1}^{K} w(\eta(\mathbf{x}))_k Var(d_t|M_k, D_k^{Calib})$$
(13)

- We performed a preliminary grid search to study the effect of two hyperparameters:
 - The depth of the CART tree: mdepth
 - The noise used to model the distribution of high-fidelity data around the SBL-EARSM predictions and that is used to calculate the likelihoods: σ^{CART}
- The choice of the best hyperparameters depend on the velocity predictions of the training set
- Results show that:
 - $\sigma_{optim}^{CART} \simeq 0.01$
 - 2 values of *mdepthoptim* are found:
 - $mdepth_{optim} \simeq 3$ for optimal τ_{xy} predictions
 - $mdepth_{optim} \simeq 10$ for all other Quantities of Interest
- A deeper and more precise grid search around these optimal value is needed for an optimal final result