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Context

RANS (Reynolds-Averaged Navier-Stokes) simulations for engineering,
design and optimisation
+ Simplicity, low cost, robustness
— Low fidelity
Mostly Linear Eddy Viscosity Models (LEVM): "Boussinesq” analogy
* Non-linear corrections in the baseline LEVM:

© Work well for a limited set of flow cases

@® Based on local equilibrium assumptions + some empiricism
® Complex coefficient expressions, numerical stiffness

@ No information about uncertainties

Choice of a 'best’ turbulence model often based on 'expert judgement’

Recent trends:

® Increasing availability of high-Fidelity databases
* Development of ML-augmented turbulence models 1! 3!

mDuraisamy, K., laccarino, G., and Xiao, H. (2019). Annual Review of Fluid Mechanics, 51:357-377
12] Xiao, H. and Cinnella, P. (2019). Progress in Aerospace Sciences, 108:1-31
13] Duraisamy, K. (2021). Physical Review Fluids, 6:050504
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Introduction

GOAL:
— Learn customized non linear eddy viscosity models for selected flow
classes:
¢ Stochastic ( equipped with measure of uncertainty)
® Physically interpretable
® Sparse (less complex, more robust, less likely to overfit)
— Automatically combine these customized models to yield predictions
better than LEVM throughout the flows of the Collaborative Testing
Challenge
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Let us consider K SBL-EARSM models, learned in different environments.
We aggregate their individual solutions dj to produce robust predictions of
new flows

e Mixture of Experts: Exponentially Weighted Average (EWA) of models

- 5k 8500
we(84; 5 0,) = ST 00w) (1)
Zl:l gi(d%;050)

where:
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Let us consider K SBL-EARSM models, learned in different environments.
We aggregate their individual solutions dj to produce robust predictions of
new flows

¢ Mixture of Experts: Exponentially Weighted Average (EWA) of models
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where:
® 4 is a vector of high-fidelity data ~
* §is a vector of the k™ individual model predictions for § (Nota: 6 # di!)
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Let us consider K SBL-EARSM models, learned in different environments.
We aggregate their individual solutions dj to produce robust predictions of
new flows

¢ Mixture of Experts: Exponentially Weighted Average (EWA) of models

ge(0%;6;0)

wi(88500) = <= (1)
UYL 055 00)
where:
® 5 is a vector of high-fidelity data B
* §is a vector of the k™ individual model predictions for § (Nota: 6 # di!)
® o, is a hyperparameter
® g, is a cost function of the form
- 1 (65 =87 (-0
w(0'i8i) = oxp (-3 £ 0 @)
* The aggregated prediction of quantity d writes:
K
dMA = Z Wkdk (3)
k=1
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MA: constant weights do not account for "regional” model behavior
X-MA:’local’ and ’physics-aware’ aggregation:

() = (0 (0); s mo(x) <5 (wi(8' (x); 3(x):04), oy wi (6 (1) 0(x)50,))) (4)

local flow features local models weights

dy () = Wi(n(x); o) e (x) (5)
k=1

Feature Description Formula Feature Description Formula
Q7 —T[S]?
m Normalized @ criterion % 76 Viscosity ratio ﬁ
OP OP
) ) k Ratio of pressure Dz: 0mr
70 Turbulence intensity U E 7 normal stresses to
Ui+ normal shear stresses
Turbulent Reynolds (VEA Non-orthogonality 'U’“U’ )
7 number min | = ,2 7R marker between velocity 0 o
and its gradient [28] UnUnUiTlUm m L U,U; i
1 Oz Oz
JP Ok
n Pressure gradient k@.’vk " Ratio of convection to 'Oz,
n . —_—— o . —
along streamline P oP ar production of k — ok
= UiUiJr‘Ul— [z Sl + Ui~
Oz Oz Oy Tl
Ratio of turbulent ISk Ratio of total Reynolds HWH
3 time scale to mean S 710 stresses to normal %
strain time scale lISllk +e Reynolds stresses k+ Huiu]H N
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Results

Ref case Data
D, | ZPG-TBL DNS of turbulent boundary layer, 670 < Rey < 4060T
D, FDC DNS of turbulent channel flow, 180 < Re, < 590!
D; ANSJ PIV of near sonic axisymmetric jet %
D, APG LES of adverse pressure-gradient TBL [T
Rey < 4000, 8 = 4, 5 different pressure gradients
Ds SEP LES of Periodic Hills at Re=10595 [11]
DNS of converging-diverging channel at Re=13600 ['2
LES of curved backward facing step at Re = 13700 ['3]
Dy N4412 | LES of NACA4412 at a = 5, Re, = 10°,2.10°,4.10%, 100 [T4]

e SBL-EARSM models are infered using Reynolds stress data
® The aggregation of models is using streamwise velocity data

[7]Schlaner, P, Orlu, R., Li, Q., Brethouwer, G., Johansson, A. V., Alfredsson, P. H., and Henningson, D. S. (2011). In Seventh International Symposium on
Turbulence and Shear Flow Phenomena. Begel House Inc
[8]Moser, R. D., Kim, J., and Mansour, N. N. (1999). Physics of fluids, 11(4):943-945
[9]Bridges, J. and Wernet, M. (2010). In 16th AIAA/CEAS aeroacoustics conference, page 3751
[ 0]Botznke, A., Vinuesa, R., Orlii, R., and Schlatter, P. (2017). Journal of Fluid Mechanics, 820:667-692
[111Breuer, M., Peller, N., Rapp, C., and Manhart, M. (2009). Computers & Fluids, 38(2):433-457
n2] Laval, J.-P. and Marquillie, M. (2011). In Progress in wall turbulence: understanding and modeling, pages 203-209. Springer
L 3]Bentalleb. Y., Lardeau, S., and Leschziner, M. A. (2012). Journal of Turbulence, (13):N4
o 4]Vinuesa, R., Negi, P. S., Atzori, M., Hanifi, A., Henningson, D. S., and Schlatter, P. (2018). International Journal:6f Heat and Fluid Flow, 72:86-99 ) < (»
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Figure 7: Streamwise velocity U at different streamwise stations
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Figure 8: Reynolds shear stress 7, at different streamwise stations
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Figure 9: Streamwise velocity along symmetry axis
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Figure 13: C, vs. x (left) and C; vs. x (right) at o = 10°
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Figure 14: C, vs. x (left) and C; vs. x (right) at a = 15°
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Figure 15: C, vs. x (left) and Cy vs. x (right) at o = 17°
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Figure 16: C, vs. x (left) and C; vs. x (right) at o = 18°
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* We presented a Sparse Bayesian Learning (SBL) approach for
discovering non linear corrections of LEVM with stochastic model
parameters

* We explored a method for aggregating, in a ’local’ and ’physics-aware’
manner, predictions of SBL-EARSM models

e X-MA provides estimates of (parametric + model form) uncertainty
— Future work:
e Derive customized SBL-EARSM for other flow classes

e Relax limitations intrinsic to Pope’s representation

* Improve model aggregation algorithm to avoid unphysical wiggles and to
return to baseline model for flow regions far apart the training sets
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Training set Model

M) = [(—0.264 £ 0.1263) + (2.61 £ 4.55)(I; — L)+
(—6.19 £ 12.3)(1} — I3) + (4.89 £ 10.0)(I; — 13)]TWV
+0.1647

M) = [(0.198 +0.0245)12 + (—0.362 + 0.0562) (I} — I3)+
(3.25 £ 0.449)(I7 — I7) + (3.13 £ 0.589) 18+
+(—0.198 £ 0.449)1; L] T £ 0.00045

M2 = [(0.168 + 0.0886)]T() + 0.893
(FDC) M = [(3.2140.361) + (—2.88 + 1.24)(F} — I3)+
(—0.176 £ 0.32)(I; — I3)]T® +0.00337)

M) = [(0)] +0.00863

(ANSJ) M) = [(—0.35+0.0143)]T() + [(~38.476 + 2.16)]T®)

40.00241

(ZPG-TBL)

TW = 15 T® = L (50 — QS) and T®) = L, (82 — 1Tr($?)])

Fr38= 2r E= 9DAQ
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Training set Model
MY = [(0.477 +£0.259)]T() + 0.000626
(APG) MY = [(—0.12+0.0206) + (0.918 + 0.332) (I, — I,)]T()
+0.0000176
{M(S) = [(0)] + 0.00669
(SEP) b
M) = [(0.38240.0184)]T() +0.0385
MY = [(—0.39 +0.000214)]TM + [(7.00 = 0.00169)] T+
(N4412) [(6.00 +0.038)]T®) + 0.000626
MY = [(0)] +0.00011

T = 15, T® = L (50— QS) and T®) = L (82 — {7r(5%)))
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° |et:

® § arandom variable refering to the generic 'non-infered’ model coefficients
e With the SBL framework, we have:

e D% 3 random variable refering to the high-fidelity training data set
where:

9|D1€alib <:> elfBL|D]€alib7Mk
model form M
models to each other:

e 95BL 3 random variable referinf to the infered model coefficients under the

(6)

® M arandom variable refering to the infered form of the SBL correction

Soufiane CHERROUD (DynFluid-ENSAM)

* We use high-fidelity velocity data to evaluate the relevance of the derived

e D™ high-fidelity velocity data used to calculate models’ weights

X-MA of SBL-EARSM

July 27, 2022

DA



* We want to make predictions on an unseen quantity d;:

K

p(dt|DEml) — Zp(dta D]E‘alib|DEval) (7)
k=1
K

-3 / pdy, DI 0|DP ) dp (®)

— Z/ d,, 9SBL Mk,Dgalib|DEval)d9}§BL (9)

d |DEval Zp DCalzb|DEval)/ (dt|Mk7D]€ahb HSBL) (glfBL|Mk’DI€alib) d@l

model—probability likelihood posterior

(10)
® p(My, DE®| DEvl) can be calculated using Bayes’ theorem:

(M DCalzb |DEval) (DEWI |Mk’ Dl(c:alib)

Zl (DEval|Ml’ D[Calib)
[m] =5 =

Soufiane CHERROUD (DynFluid-ENSAM) X-MA of SBL-EARSM July 27, 202
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* We want to make the probability of every model sensitive to local flow
features:
© We train a CART to identify clusters in the flow and learn the weights of
every model using local flow features

@® Every cluster gives a convex combinaison of the models’ weights
® The X-MA writes:

nG) = (1 (3), o) < (p(My, DF™ [DP (), o, p (M, DR DR (1) )

pdi(x)[DP) = > w(n () / p(di| My, DE, ;50 )p(6°F | My, DE™)dg"
k=1
e \We can proove that:

E(dy(x)|D") =

M=

~
Il

1

Var(d;(x) |DE"“’) =

Soufiane CHERROUD (DynFluid-ENSAM)

w(n(x))eE(dy| My, DE™)

M)~

~
I

(12)
w(n(x)) Var(d,[ My, DS

1
X-MA of SBL-EARSM

=

(13)
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* We performed a preliminary grid search to study the effect of two
hyperparameters:
® The depth of the CART tree: mdepth
® The noise used to model the distribution of high-fidelity data around the
SBL-EARSM predictions and that is used to calculate the likelihoods: o®*"

e The choice of the best hyperparameters depend on the velocity
predictions of the training set
® Results show that:
° (‘fp“}ﬁf ~ 0.01
® 2 values of mdepth.p:in are found:
® mdepthepim ~ 3 for optimal 7, predictions
® mdepth.pim ~ 10 for all other Quantities of Interest
* A deeper and more precise grid search around these optimal value is
needed for an optimal final result

Soufiane CHERROUD (DynFluid-ENSAM) X-MA of SBL-EARSM
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