Recent evolution of Gene-Expression Programming for developing turbulence models

Richard Sandberg

richard.sandberg@unimelb.edu.au

<u>Acknowledgements</u>: Dr J Weatheritt, Dr Y Zhao, Dr H Akolekar, Dr C Lav, Dr A Haghiri, F Waschkowski, M Schoepplein, M Reissmann, Prof M Klein

Why do we need better turbulence models? Example of gas turbines

- Correlation-based approaches unable to improve efficiency

- Experiments expensive
- High-fidelity simulations too expensive for design $(> 10^{15} DOF)$

Why accuracy important?

- Inaccurate prediction can erode operability
 - → unexpected compressor stall at off-design
- → 2% error in predicted metal temperature can halve blade life (Han et al. 2012)
- Inaccurate prediction of complex flows can cost 0.5% efficiency
- → small gains have significant impact on fuel use (>300 billion litres!), emissions and potential uptake of new fuels

https://www.geaviation.com/commercial/engines/ge9x-commercial-aircraft-engine

Key Challenges for RANS in Turbomachinery

Blade-to-blade effects

Blade-row to blade-row effects

Deterministic unsteadiness Blade-to-blade interaction, vortex shedding, intermittent wakes

amplitude

Challenges that lead to inaccuracies:

- Enthalpy and thermal mixing not correct
 - → recalibrate coefficients (NOT GENERAL)
- Deterministic vs stochastic unsteadiness
 - Vortex shedding
 - Wakes
 - **SBLI**
 - → URANS (spectral gap!)

- Transition
 - Natural
 - **Bypass**
 - Separated flow transition
 - → Transition models (MORE MODELING)
 - Misalignment of τ_{ij} and S_{ij}
 - Non-equilibrium BL, Wake distortion
 - → Fix inherent model error (ML?)

Background – Gene Expression Programming

We want a *symbolic* regression approach to develop turbulence models from hi-fi data

- Get robust CFD-ready models (plug and play)
- Interpretable
- Training on simulation or experimental data
- Train models for *unsteady flows*

Evolutionary concepts borrowed from biology (evolve suitable functions)

- Survival of fittest idea
- Incremental improvements via genetic operations (cloning, mutation, crossover)

How do we evolve symbolic expressions that are syntactically correct?

- Gene Expression Programming (GEP) transforms symbols to equations (Ferreira, 2001):

Chromosome - list of symbols (exists in code)

Predictive model (valid expression - can be nonlinear)

Background – Gene Expression Programming

Schematic of evolutionary algorithm: Update population to next generation population of models $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ Q + \times \times & a & a & b & b & a & a & b & c & 1 \\ 0 & 1 & 2 & 2 & 2 & 2 & 2 & 2 \end{bmatrix}$ $\left\{ \begin{array}{ccc|c} 0 & 1 & 2 & 3 & 4 & 5 \\ Q & a & \times & a & a & \times \\ \end{array} \right. \left. \begin{array}{cccc|c} 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ b & b & a & a & b & c & 1 \\ \end{array} \right\}$ Apply genetic modifications (mutations, transpositions, Evaluate fitness of models combinations) Natural selection $\left\{ \begin{array}{ccc|c} 0 & 1 & 2 & 3 & 4 & 5 \\ Q + \times \times & a & a & b & b & a & a & b & c & 1 \end{array} \right\}$

- Set of predictive models (population) is developed over multiple generations to fit the available training data
- The fittest model of the last generation is the training outcome
- Can do that with tensors and vectors as well (Weatheritt & Sandberg, JCP 2016)

Gene Expression Programming for turbulence modelling

Development of improved anisotropy model

(Weatheritt & Sandberg, 2016)

Extend the linear model to include higher order gradients

$$\tau_{ij} - \frac{2}{3}\rho k \delta_{ij} = -2\mu_t S'_{ij} + 2\rho k \sum_{k=1}^{10} \zeta_k (I_1, I_2, I_3, I_4, I_5) V_{ij}^k$$

Unknown coefficients, functions of independent variables

Independent tensor variables

$$V_{ij}^{1} = s_{ij}, V_{ij}^{2} = s_{ik}\omega_{kj} - \omega_{ik}s_{kj},$$

$$V_{ij}^{3} = s_{ik}s_{kj} - \frac{1}{2}\delta_{ij}s_{mn}s_{nm},$$

Independent scalar variables

Basis Functions

Pope (1975)

Strain rate tensor: $s_{ij} = \tau S_{ij}$ Vorticity rate tensor: $w_{ij} = \tau \Omega_{ij}$

turbulent time scale: $\tau = 1/\omega$

Extension of approach by introducing correction to production in k- ω equations (Schmelzer et al., 2020)

 $I_1 = s_{mn}s_{nm}, I_2 = \omega_{mn}\omega_{nm}$

$$\begin{split} \frac{\partial k}{\partial t} + \overline{u}_j \frac{\partial k}{\partial x_j} &= \left(P_k + R\right) - \beta^* k \omega + \frac{\partial}{\partial x_j} \left((\nu + \sigma_k \nu_t) \frac{\partial k}{\partial x_j} \right) \\ \frac{\partial \omega}{\partial t} + \overline{u}_j \frac{\partial \omega}{\partial x_j} &= \frac{\gamma}{\nu_t} \left(P_k + R \right) - \beta \omega^2 + \frac{\partial}{\partial x_j} \left((\nu + \sigma_\omega \nu_t) \frac{\partial \omega}{\partial x_j} \right) \\ R &= k a_{ij}^R \frac{\partial \overline{u}_i}{\partial x_j} &+ 2 \left(1 - F_1 \right) \sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} \\ \text{Unknown coefficients, functions} \\ a_{ij}^R &= \sum_{k=1}^{10} \xi_k \left(I_1, I_2, I_3, I_4, I_5 \right) V_{ij}^k \end{split}$$

With **high-fidelity data** try to **find** ζ_k and ξ_k as functions of independent variables I_k

Pool of symbols:
$$S = \left\{ V_{ij}^k, I^l, C_m, +, -, \times \right\}$$

Gene Expression Programming – statistically 2D flows

1) Reynolds stress:

Apply trained model to different flow

Periodic Hills

GEP model: $\alpha_t^{mod,1} = \{6.806I_2 - 109.407J_1\}$

LES-TL: reference LES

Linear: linear RANS model (SST) : non-linear EASM model

M-GEP: ensemble average of

trained models

Eq 1/2: individual new models

New models tested on 9 other cases with different slot geometries and Blowing Ratios – 2 examples

10 20

Gene Expression Programming – unsteady flows

Gene Expression Programming – unsteady flows

How to develop models for unsteady flows?

- Underpinning feature of turbomachinery is interaction of stochastic (turbulence-driven)
 and deterministic (stator-rotor interaction / vortex shedding) flow unsteadiness
- Drives mixing processes of momentum & enthalpy → determines level of irreversibility and thus efficiency

Heat-flux & Reynolds stress modelling – unsteady flows

VS

Approach 1: Use phase-lock averaged DNS data to train models

(Akolekar et al., JoT 2018)

Time average

Phase 7

$$a_{ij}^{EARSM} = -\frac{V_t}{k} S'_{ij} + \zeta_1 V_{ij}^1 + \sum_{m=2} (\zeta_m V_{ij}^m)$$

Machine-Learning (GEP) for unsteady flows

Approach 2: Develop bespoke model for unsteady RANS

Bespoke GEP models for URANS

Turbulence stress and heat flux closures model only stochastic part of fluctuations, other scales need to be resolved

Machine-Learning (GEP) for unsteady flows

Approach 2: Develop bespoke model for unsteady RANS

Untrained URANS

- Greatest improvement from RS model
- HF model provides most improvement downstream

Gene Expression Programming – statistically 3D flows

Perform recursive feature elimination:

(Weatheritt et al, IJHMT 2020)

Train models using only first three basis functions

(Bodard et al., CTR 2013)

Overall good improvement with GEP model

Gene Expression Programming – statistically 3D flows

Perform recursive feature elimination:

Gene Expression Programming – statistically 3D flows

BUT: 3D bump case (BeVERLI Hill) from NATO AVT-349

- For this case, production correction term results in too high TKE levels over bump, changing or even preventing separation entirely
- Ideally, should train new model on more similar problem (smooth surface)?
- Other ways to improve model consistency?

'Frozen' Gene-Expression Programming

'CFD-driven' GEP

A-posteriori cost fcn – external code

Benefits:

- **Built-in model** consistency
- Flexible choice of variables in objective function
- Reduced amount of required highfidelity data

Model trained on HPT data at Re=570,000

Machine-learnt model extension

Much simpler expression than from 'frozen' training

$$\tau_{ij}^{fro} = \frac{2}{3}\rho k \delta_{ij} - 2\mu_t S'_{ij} + 2\rho k [$$

$$(-1.334 + 0.438I_1 + 2.653I_2 + 0.0102I_1^2 - 1.021I_2^2 + 12.280I_1I_2)V_{ij}^1$$

$$+ (0.573 - 1.096I_1 + 8.985I_2 - 0.1102I_1^2 + 2.876I_2^2 + 90.633I_1I_2)V_{ij}^2$$

$$+ (12.861 - 25.094I_1 + 6.449I_2 + 1.020I_1^2 - 304.979I_1I_2 - 184.519I_2^2)V_{ij}^3]$$

Error reduced by factor > 5

Model trained on HPT data at Re=570,000

Standard linear model (baseline) $\tau_{ij} - \frac{2}{3}\rho k \delta_{ij} = -2\mu_t S'_{ij} \qquad \text{(baseline)}$ $+2\rho k \left[\frac{(-3.57 + I_1)V_{ij}^1 + 4.0V_{ij}^2 + \left(-0.11 + 0.09I_1I_2 + I_1I_2^2\right)V_{ij}^3}{(-0.11 + 0.09I_1I_2 + I_1I_2^2)V_{ij}^3} \right]$

Machine-learnt model extension

Tested on:

1.2 8.0 - 0.2 3 0.6 0.2 -0.50.0 0.5 0.3 0.20.10.2 0.4

New model trained on one data set performs well on all test cases, at <u>different flow conditions</u> and for <u>different geometries</u>

CFD-driven LES

(Reissmann et al., JCP 2020)

- Need to run 1,000s or 10,000s of LES need to be 'affordable'
- Pick Taylor-Green-Vortex as test problem
- Demanding for SGS-models as it features laminar-turbulent transition

$$\tau_{ij}^{GEP} = -2\Delta^2 \left| \overline{S} \right|^2 \sum_{k=1}^n \xi_k \left(I_1, ..., I_n \right) V_{ij}^k$$

With inverse time scale $\left|\overline{S}\right| = \sqrt{\overline{S}_{mn}\overline{S}_{nm}}$

LES setup

- Incompressible solver (PARIS (Ling et al, Int J Multiph FI.
 2015)) 0.75core h/run (10,000)
- Re=1,600
- Grid with 32³ grid points
- Reference DNS with 256³ grid points

Cost function

$$J(\varphi) = \frac{1}{T} \int_0^T \frac{|\varphi_{DNS}(t) - \varphi_{LES}(t)|}{|\varphi_{DNS}(t)|}$$

$$J^{tot} = \frac{3}{5}J(TKE) + \frac{2}{5}J(\epsilon)$$

Machine-Learning (GEP)

CFD-driven LES

(Reissmann et al., JCP 2020)

$$\tau_{ij}^{GEP1} = -2\Delta^2 \left\{ - \left(I_3 + 0.04 \right) V_{ij}^2 \right\}$$

$$\tau_{ij}^{GEP2} = -2\Delta^2 \left\{ 0.01 \left| \overline{S} \right| V_{ij}^1 - 0.146 V_{ij}^2 + 0.01 V_{ij}^3 - 0.011 V_{ij}^4 \right\}$$

Model	$J^{tot}:(K)\times 100$
No Model	9.67
Clark	11.78
Smago	21.45
Sigma	20.54
Mixed	18.64
GEP1	5.59
GEP2	1.51

Machine-Learning (GEP)

CFD-driven LES

Robustness of GEP2 model

 $\tau_{ij}^{GEP2} = -2\Delta^2 \left\{ 0.01 \left| \overline{S} \right| V_{ij}^1 - 0.146 V_{ij}^2 + 0.01 V_{ij}^3 - 0.011 V_{ij}^4 \right\}$

GEP2 model produces good results for different LES resolutions

GEP2 model works well for different Reynolds numbers

Gene Expression Programming – Multi-expression

Multi-expression GEP training

Motivation: Capturing coupling effects when training multiple closure models

Population

(Waschkowski et al., 2021)

 $\times + \times C_3 I^1 \times I^2 I^2 V_{ij}^1 + \times - I^1 C_4 v_i^1 v_i^2 C_2 I^2$

 $+ V_{ij}^2 \times V_{ij}^1 + C_1 C_2 I^1 I^2 \times + C_1 I^1 v^3 I^1 I^3 C_2 I^1$

:

 $+ V_{ij}^{1} V_{ij}^{2} \times I^{1} I^{2} C_{2} C_{2} C_{1}$ $v_{i}^{2} + + - v_{i}^{1} v_{i}^{2} C_{3} I^{2} I^{5}$

Idea:

Extension of candidate solutions from one expression to multiple expressions

Assignment of shared fitness value to each set of expressions

Exchange of genetic material only between alike expressions

Pope (1975):
$$a_{ij} = \sum_{k=1}^{10} g^k \left(I^1, I^2, ..., I^5 \right) V_{ij}^k$$

Zheng (1994):
$$\overline{u_i'T'} = \sum_{k=1}^6 h^k \left(I^1, I^2, ..., I^{13} \right) v_i^k$$

Gene Expression Programming – Multi-expression

Multi-expression GEP training

Example: Vertical natural convection

$$J = \frac{1}{N_1} \sum_{n} \left| \overline{u}_{1,n}^{\text{EVE}} - \overline{u}_{1,n}^{\text{DNS}} \right|^2 + \frac{1}{N_2} \sum_{n} \left| \overline{T}_{n}^{\text{EVE}} - \overline{T}_{n}^{\text{DNS}} \right|^2$$

How to know beforehand whether we need weights for cost function?

 J_2

Gene Expression Programming – Multi-objective

Idea: NSGA-II algorithm (Deb, 2002)

Pareto domination to minimize separate

training objectives

Significant benefits when expressions strongly coupled!

(Waschkowski et al., JCP 2021)

Gene Expression Programming – Multi-objective

Turbulent boundary layers in pressure gradients – data from VT experiments

Importance of cost functions

• Have used novel multi-objective optimization (e.g. U and τ_w)

Legends:

- E: Experiment
- R: Baseline RANS
- U^+ : CFD-driven using U^+ as cost function
- $\tau_{\rm w} + \delta_1$: CFD-driven using τ_w and δ_1 as cost function

Decided to use τ_w and δ_1 as cost functions

Gene Expression Programming – Multi-objective

Multi-objective model training, using -10° at Re=2.5 x 10⁶ data, yields:

 $a_{ij}^{x} = -0.15 V_{ij}^{1} + 0.43 V_{ij}^{2} + (I_{2} + 1)V_{ij}^{3}$

Testing on 12° case at Re=3.6 x 10⁶

- Legends:E: Experiment
- R: Baseline RANS
- -10° : Model trained on case at -10°

(Lav & Sandberg, SNH 2022)

Can we generalize to a completely different case?

Used UniBW and DLR smooth wall setup (10m/s)

→ downstream not so good Needed: stronger PG datasets

Gene Expression Programming – Multi-objective

(Akolekar et al., 2022)

Development of improved transition modelling and wake mixing modelling for LPT

2 expressions: modify/extend terms in Laminar Kinetic Energy Transition model

3 objectives:

$$J^{MO1} = \sum_{x/C_{ax}=0.6}^{1} \left(\tau_{w}^{DNS} - \tau_{w}^{RANS}\right)_{SS}^{2},$$

$$J^{MO2} = \sum_{x/C_{ax}=0.6}^{1} \left(C_{p}^{DNS} - C_{p}^{RANS}\right)_{SS}^{2}.$$

$$J^{MO2} = \sum_{x/C_{ax}=0.6}^{1} \left(C_p^{DNS} - C_p^{RANS} \right)_{SS}^{2}.$$

$$\Omega^*(y) = \frac{p_{01} - p_{02}(y)}{p_{01} - p_2},$$

$$\Delta_C = \frac{1}{w} \int_0^w \left(\frac{\Omega_{DNS}^* - \Omega_{RANS}^*}{max(\Omega_{DNS}^*)} \right)^2 dy,$$

$$J^{MO3} = \Delta_{C1} + \Delta_{C2},$$

Gene Expression Programming – Adaptive Symbols

Introduction of additional, adaptive symbols

Motivation: Challenge for GEP to learn accurate numerical constants (Zhong et al., 2017)

$$S = \left\{ V_{ij}^k, I^l, C_m, +, -, \times \right\} \qquad C = \{-1, 1, 2\} \cup \{-0.67, -0.32, 0.11, 0.35, 0.82\}$$

Learn $C_{\epsilon}C^* = 9.99$ adaptive symbol values during training via gradient-based numerical optimizers

Levenberg-Marquardt (LM) algorithm

Gene Expression Programming – Adaptive Symbols

Summary & Outstanding Issues

- GEP produces CFD-ready and interpretable turbulence closures
- CFD-driven GEP produces model-consistent closures
 - Only requires limited data
 - Allows for multi-expression training in which model interactions are considered
 - Enables multiple objectives (any quantity) to be met

<u>Issues</u>

- CFD-driven too costly for complex (3D) geometries and high Re
 - What is needed to make its use more practical?
- Are we using correct input features and basis functions?
- How do we ensure better generalizability of models?
 Will we have enough data?

GEP not that good in finding 'hidden features', patterns in data → can leverage NNs?

Backup

Machine-Learning (GEP) for unsteady flows

Approach 1: Use phase-lock averaged DNS data to train models

Not practical to apply a different model for each phase

→ chose two models, one each for which additional diffusion and non-linear terms dominate

- Mod-PA (one model for each phase) best performance
- Mod-TA (model from time-average) worst performance
- Mod-Phy (2 models based on flow physics) quite good overall

Transition modeling

Development of improved transition modeling

(Akolekar et al., 2021)

Modify/Extend Laminar Kinetic Energy Transition model

(Pacciani et al., 2011)

$$\frac{Dk_l}{Dt} = P_l - 2\nu \frac{k_l}{y^2} + \nu \nabla^2 k_l - R$$

$$P_l = \nu_l S^2,$$

$$\nu_l = C_1 f_1 \sqrt{k_l} \delta_{\Omega},$$

$$f_1(Tu) = max \left[0.8, 2.0 \cdot tanh\left(\left(\frac{Tu}{4.5} \right) \right) \right],$$

$$\delta_{\Omega} = max_y \left(\frac{U}{\Omega}\right),\,$$

$$R = C_2 \beta^* f_2 \omega k_1,$$

$$f_2 = 1 - e^{-\psi/C_3}$$

$$\psi = max(0, R_y - C_4),$$

$$R_y = \frac{\sqrt{k}y}{\nu}$$

Laminar eddy viscosity

$$\nu_l = f_{1a} y \sqrt{k_l}$$

$$f_{1a} = f(\Pi_i)$$

$$\psi = max(f_{2a}(\Pi_i), 0)$$

Non-dimensional Pi groups

$$\begin{array}{ll} \nu_l = f_{1a}y\sqrt{k_l}, & \Pi_1 = \frac{k_l}{\nu\Omega}; \ \Pi_2 = \frac{\Omega y}{U}; \ \Pi_3 = \frac{y}{l_t}; \ \Pi_4 = \frac{\sqrt{k}y}{\nu}; \\ f_{1a} = f(\Pi_i) & \Pi_5 = \frac{k}{\nu\Omega}; \ \Pi_6 = \frac{Sy}{U}; \ \Pi_7 = \frac{\omega}{\Omega}, \end{array}$$

Multi-objective modelling (multi-expression)

$$J^{MO1} = \sum_{x/C_{ax}=0.6}^{1} \left(\tau_w^{DNS} - \tau_w^{RANS}\right)^2,$$

$$J^{MO2} = \sum_{x/C_{qx}=0.6}^{1} \left(C_p^{DNS} - C_p^{RANS} \right)^2.$$