

Towards more accurate and general turbulence models using CFD-driven training on multiple flows

Supervisors: Richard D Sandberg, Andrew S H Ooi, Yaomin Zhao

Presenter: Yuan Fang

28/07/2022

Contents

Single-case training Difficulties and Strategies Multi-case training Summary

Contents

Single-case training

Difficulties and Strategies

Multi-case training

Summary

1

2

3

4

1.1 The research objectives

Numerical cases division

Training cases: plate; channel; jet; hump

Testing cases: NACA 0012 airfoil with 4 angles of attack

- Not enough data at the stall
- Four cases training leads to high computation cost
- Need testing cases

1.2 CFD-driven framework

Single-case CFD-driven framework

1.3.1 Flat Plate

Cost function: friction coefficient along momentum thickness

Goal: (compare with **theory**)

- 1) Friction coefficient with x
- 2) Velocity law at x=0.97

The geometry, boundary conditions for 2D flat plate

$$\boldsymbol{a_{ij}} (V_{ij}^k, I_k) = (I_1(I_1 - 0.178I_2 - 0.7293))V_{ij}^1 + (4I_2 + 0.6143)V_{ij}^2 + (0.089I_1 + 2.05073)V_{ij}^3$$

1.3.2 Channel Flow at High Reynolds Number

Cost function = goal :

the velocity law at x = 500

The geometry, boundary conditions of channel flow

$$\boldsymbol{a_{ij}}(V_{ij}^k, I_k) = (0.00784535)V_{ij}^1 + (3I_1 + I_2 + 0.097)V_{ij}^2 + (I_2)V_{ij}^3$$

THE UNIVERSITY OF

1.3.3 Axisymmetric Subsonic Jet

Cost function:

velocity profiles in the fully turbulent region x/Djet= **15 and 20**

Goal: (compare with experiment)

- 1) Velocity along x
- 2) Velocity profiles at5 locations
- Shear stress profiles at 5 locations

$$\mathbf{a}_{ij} (V_{ij}^k, I_k) = (0.224885 + I_2)V_{ij}^1 + (I_1 + 0.055)V_{ij}^2 + (1.911)V_{ij}^3$$

1.3.4 2D NASA Wall-Mounted Hump Separated Flow

Cost function: the sum of velocity profiles near the bubble and pressure along hump

Goal: (compare with experiment)

- 1) Cp vs. x/c
- 2) Cf vs. x/c
- 3) Velocity profiles at 7 locations
- 4) Shear stress profiles at 7 locations

$$a_{ij} (V_{ij}^k, I_k)$$

$$= (-0.15 - I_1 - 0.57I_2)V_{ij}^1 + (-I_1 + I_2 - 2.061)V_{ij}^2 + (I_1I_2)V_{ij}^3$$

Contents

Single-case training Difficulties and Strategies Multi-case training Summary

2.1 Difficulty of building a general model

2.1 The open-box expression analysis

Table 1. The nonlinear term of Reynolds stress for every case

Flat Plate Case

$$\mathbf{a}_{ij} \left(V_{ij}^k, I_k \right) = \underbrace{\left(I_1 (I_1 - 0.178 I_2 - 0.7293) \right) V_{ij}^1 + (4.0 I_2 + 0.6143) V_{ij}^2 + (0.089 I_1 + 2.05073) V_{ij}^3}_{(0.089 I_1 + 2.05073) V_{ij}^3}$$

Channel Flow with High Re Number Case

$$\boldsymbol{a_{ij}}\left(V_{ij}^{k},I_{k}\right) = (0.00784535)V_{ij}^{1} + (3.0I_{1} + I_{2} + 0.097)V_{ij}^{2} + (I_{2})V_{ij}^{3}$$

Axisymmetric Subsonic Jet Case

$$\boldsymbol{a_{ij}}\left(V_{ij}^{k},I_{k}\right) = \underline{(I_{2} + 0.224885)V_{ij}^{1} + (I_{1} + 0.055)V_{ij}^{2} + (1.911)V_{ij}^{3}}$$

Wall-Mounted Hump Separation Flow

$$\mathbf{a}_{ij} (V_{ij}^k, I_k) = (-0.15 - I_1 - 0.57I_2)V_{ij}^1 + (-I_1 + I_2 - 2.061)V_{ij}^2 + (I_1I_2)V_{ij}^3$$

- 1. Major contribution comes from V_{ij}^1 term
- 2. The magnitude of I_1 and I_2 are small. Hence, the coefficient inside the V_{ij}^1 term contribute most. However, both negative and positive values appear, which leads to compromised results.

2.2.1 The framework of multi-case CFD-driven training framework

C1 C2 C3 represent different cases

> Reduce computation cost: 16 cores for up to 4 days

2.2.1 Add flow features in the coefficients

Literature review of the selection of the input features

2.2.1 Add flow features in the coefficients

Table 1: Summary of the added input features

Flow features	Description	Denotation
N1	Reynolds number based on wall distance	$\min(\frac{\sqrt{k}d}{50v},2)$
N2	Pressure gradient along the streamline	$U\frac{\partial P}{\partial x}$
N3	Switch function F_2 in $k-\omega$ SST	F_2

$$F_{1} = tanh(arg_{1}^{4}); arg_{1} = min(max((\frac{\sqrt{k}}{\beta^{*}\omega y}); \frac{500\nu}{y^{2}\omega}); \frac{4\rho\sigma_{\omega 2}k}{CD_{k\omega}y^{2}});$$

$$CD_{k\omega} = max(\frac{2\rho\sigma_{\omega 2}}{\omega} \frac{\partial k}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}; 1.0e^{-10})$$

$$F_{2} = tanh(arg_{2}^{2}); arg_{2} = max(2\frac{\sqrt{k}}{\beta^{*}\omega y}; \frac{500\nu}{y^{2}\omega})$$

2.2.3 Model an additional turbulence production or dissipation term

$$\rho \frac{\partial k}{\partial t} + \rho U_j \frac{\partial k}{\partial x_j} = \left[\overline{\tau_{ij}} \right] \frac{\partial U_i}{\partial x_j} - \rho \epsilon + \frac{\partial}{\partial x_j} \left[\mu \frac{\partial k}{\partial x_j} - \frac{1}{2} \rho \overline{u_i' u_i' u_j'} - \overline{p' u_j'} \right] + R$$

Unsteady term

convection

production dissipation molecular diffusion turbulent transport pressure diffusion

$$\text{Multi-expression} \begin{cases} \textbf{a}_{ij} \ (V_{ij}^k, I_k) = g1(I_1, I_2)V_{ij}^1 + g2(I_1, I_2)V_{ij}^2 + g3(I_1, I_2)V_{ij}^3 \\ \textbf{R}_{ij} \ (V_{ij}^k, I_k) = g4(I_1, I_2)V_{ij}^1 + g5(I_1, I_2)V_{ij}^2 + g6(I_1, I_2)V_{ij}^3 \end{cases}$$

Contents

Single-case training Difficulties and Strategies Multi-case training Summary

3.1.1 Models selection according to the uncertainty of 'truth' for the flat plate case

(a) Cost function values for the four cases

(b) Evolution of the sum of cost function values

3.1.2 Result of multi-case training for the flat plate

(a) The friction coefficient along plate

(b) The velocity law at x=0.97

3.1.2 Result of multi-case training for channel and subsonic jet

The velocity law of channel flow at x = 500

(a) The velocity profiles of subsonic jet at x/Djet = 2, 5, 10, 15, 20

(b) The shear stress profiles of subsonic jet at x/Djet = 2, 5, 10, 15, 20

3.1.2 Flow field result of multi-case training for subsonic jet

Both the width and length of jet simulation improved by reducing the diffusion in the whole computation domain

3.1.2 Result of multi-case training for hump

(a)Pressure coefficient along hump surface

(b) Friction coefficient along hump surface

(a) The X-Velocity profiles at x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3

(b) The shear stress profiles at x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3

3.1.2 Result of multi-cases training for hump

The prediction of reattachment location agrees fairly well with the experiment, which is a well-known drawback of the baseline model.

3.2 A Posteriori tests

3.2 2D NACA 0012 Airfoil Validation Case (4 separate cases (angles of attack = 10, 15, 17, 18 deg))

(a) Lift coefficient at different angles of attack

(b) Lift coefficient vs. drag coefficient

3.2 Posterior tests

3.2 2D NACA 0012 Airfoil (4 separate cases (angles of attack = 10, 15, 17, 18 deg))

- Gregory. Re=3mill. free transition Ladson 1Re=6mill. free transition Multi-case train model 1 Ladson. Re=3mill. fixed transition OpenFOAM baseline Multi-case train model 2 Ladson. Re=9mill, fixed transition 4×10^{-2} $\times 10^{-2}$ $\times 10^1$ $(a)_{-6}$ (d) (c) $C_f(uppersurface)$ 10° 10° 15° 15° $C_f(uppersurface)$ -0.50.0 x/cx/cx/cx/c
 - ➤ The built models improve flows with large discrepancies to 'truth' while not deteriorating flows outside the training data set.

Contents

Single-case training Difficulties and Strategies Multi-case training Summary

4. Contribution

- Analyze the difficulties to build a general model by single-case training
- ➤ Extend the single to multi-case CFD training framework and try to reduce the computation cost
- Insert additional flow features to supplement Pope's theory to capture different trends of corrections.

Other slides

1.1 The research objectives

Testing cases: NACA 0012 airfoil cases with 4 angles of attack ☐ Channel Flow at High ☐ Zero Pressure Gradient Reynolds Number Flat Plate Validation Case No detrimental A wide range **Validation Case** performance of Reynolds number for plate case Compressible Stall NACA0012 Airfoil Validation flow ■ Axisymmetric Subsonic phenomenon Cases (4 Separate cases with Different **Pimple** Jet Case 4 angles of attack) algorithm attack angles **Separation and** secondary flow ■ Wall-Mounted Hump Separated

Flow Validation Cases

1.1 The research objectives

Numerical cases division

Training cases: plate; channel; jet; hump

Testing cases: NACA 0012 airfoil with 4 angles of attack

- Not enough data at the stall
- Four cases training leads to high computation cost
- Need testing cases

Figure 1: Components of training and testing cases

4. Discussion

4.1 Non-dimensionalization and scaling way

Advantages

Easy to scale down [-1,1]

Easy to scale down [0,1]

Easy to scale down [-1,1]

- ✓ Easy to scale down [-1,1]
- Retain both the physical and sign information
- ✓ Retain sign information
- ✓ Remain the difference among cases

 $\frac{X-\mu}{\sigma}$

$$\frac{X}{\|X\| + \|Y\|}$$

$$\frac{X - min(X)}{max(X) - min(X)}$$

$$2\frac{X - min(X)}{max(X) - min(X)} - 1$$

Change the feature distribution

- ☐ Lost the sign information
- ☐ Ignore the difference among the cases

- Lost the original sign information
- ☐ Ignore the difference among the cases

Lost difference among cases

- ☐ Hard to scale down
- Lost models' generalibility

4. Discussion

4.2 Realizability – Barycentric map

(b)

(a) Barycentric map of jet at x/Djet = 2,5,10,15,20

(b) Barycentric map of hump at x/c = 0.65, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3