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/" Introduction

/’* Year one of a three year internal project focused on developing data-driven
/ RANS models for turbulent flows
* Focus on hypersonics

* Focused on three important aspects of data-driven turbulence modeling
e Improved model forms via discrepancy tensor-basis neural networks
e Focus on the Reynolds stress and turbulent heat flux
e Robust ML models via extrapolation detection

e Improved training techniques to improve feature and model consistency

e Three year project trajectory
e Year 1: Implement discrepancy TBNNs & extrapolation detection techniques and assess on
benchmark low-speed cases
e Year 2: Extend technology to high-speed flows
* Focus on compressibility effects and the turbulent heat flux

e Year 3: Formalize capability and deploy on “test” configurations

» Today: Focus on details of our framework and its deployment on the NASA test cases
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RANS predictions of thermal loadings in a shock boundary layer interaction [2]

[2] Bosco, A., Reynolds Stress Model for Hypersonic Flows, Ph.D. thesis, Rheinisch-Westfalischen Technischen Hochschule Aachen, 2011.‘



/" Mathematical setting
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/* We focus on solving the Favre-averaged compressible Navier —Stokes equations
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e Reynolds stress is unclosed

e Turbulence is modeled with a k-epsilon model
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e Reynolds stress is modeled via the Boussinesq relationship with low Reynolds ol
number treatment ik
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- RANS predictions of thermal loadings in a shock boundary layer interaction [2]
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* Can be written in terms of the anisotropy tensor %= op 3%

e Standard k-epsilon model is inadequate in various settings ‘



/" Tensor basis neural networks (TBNNs)

,/ * We investigate tensor basis neural networks [1] (TBNNs) for modeling the anisotropy tensor

aij ~ TBNN —E g » Tensor basis, e.g., Sij

e TBNN basis expansion and features are motivated by Pope’s generalized eddy viscosity hypothesis

/ e TBNNSs model the anisotropy tensor as:

Regression model, e.g., MLP

v

> Frame-invariant feature, e.g,  trace (S;;S;x)

e Resulting model for the Reynolds stress

10
Tij = —Uil; = —gkdij — 2ngk(A TF
=1

TBNNs been demonstrated to be effective in various settings

4 . . N

Challenges that we aim to address in our work:

* ML model completely replaces the Boussinesq relationship

e May perform well where we have training data, but what happens for extrapolation?

\ e Data and model inconsistency can be an issue (TKE RANS != TKE DNS) J

[1] Ling, J., Kurzawski, A, and Templeton, J., “Reynolds averaged turbulence modelling using deep neural networks with embedded

invariance,” Journal of Fluid Mechanics, Vol. 807, 2016, p. 155-166. https://doi.org/10.1017/jfm.2016.615.



/" Discrepancy tensor basis neural networks (TBNNs)
/ Challenge: Vanilla TBNN completely replaces the Boussinesq relationship
/" * Wemodel the Reynolds stress with a “discrepancy” TBNN [1]

* Idea: correct a baseline model with a TBNN discrepancy term

e Model takes the form
aig — SANS +5aTBNN — RANS +Zg A)T

e Advantages: Builds upon, rather than replaces, an existing model
e More explainable, more stable

e Disadvantage: Discrepancy model is tied to a specific turbulence model
 (This is really the case for a standard TBNN as well)

4 . N

Challenges that we aim to address in our work:

ST el Tt et R

e May perform well where we have training data, but what happens for extrapolation?

\ e Data and model inconsistency can be an issue (TKE RANS != TKE DNS) J

[1] Peters, E. L., Balin, R, Jansen, K. E., Doostan, A., and Evans, J. A, “S-frame discrepancy correction models for data- informed Reynolds stress closure,” Journal of Computational Physics, Vol.
448,2022, p. 110717. https://doi.org/https: //doi.org/10.1016/}.jcp.2021.110717, URL https://www.sciencedirect.com/science/article/pii/S0021999121006124. ‘



/" Out-of-distribution (OOD) detection

/» For use in practical situations the ML model must be certified

An ML model is only as good as the training data

.

* Models perform well on in-distribution data

e Models perform poorly on out-of-distribution data

Stone wall (87% confidence)
Our approach: Quantify if a testing data point is “in-distribution” or “out-of-distribution” EfficientNet predictions on new images’

e Use this metric to assign confidence to a prediction

e Use prediction confidence to make an informed decision about how to use the ML model

 What are we investigating: 4 « Training data
] * Interpolation
e One-class support vector machines ¢ poati
ce o Extrapolation
e Autoencoders ¢ °
Z2 R P . [ J
e Gaussian mixture models o 2000’ o ®
o
e 0o o 1
* Ensemble-based neural networks o o
Z ]

(1) E. Hullermeier and W. Waegeman, Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods, 2019, arXiv:1910.09457 [cs.LG].
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2o We first explored using one-class SVMs and Gaussian mixture wex+b=0 [ ® 0 e e O g
models to detect out-of-distribution samples \ "'-.?..:o aat i,
> Most other methods either scale with the training dataset size or & o? o o.. ®
assume radial basis functions e \ e
e . .51
9 -~
. . : Origin | ™~ "
> Main idea: query algorithm at test time, and revert back to '

standard RANS model when OOD is detected

Example of using a one-class SVM for
extrapolation detection [2]

> Used in combination with artificial training data method of
Rumsey et al. [1]

1.0e+00
[ 0.8

o Success has been mixed

— 0.6
° Issues:
> Features can be highly correlated, making it difficult to identify %
OOD Z 02
> OOD detection method can create instabilities when applied in R~ [0.0e+00
flow solver

Output of Gaussian mixture model trained on
wavy wall (Re=6850) applied to periodic hill
(Re=10,595)

1. Rumsey, C.L., Coleman, G.N., Wang, L. “In Search of Data-Driven Improvements to RANS Models Applied to Separated Flows"” AIAA SciTech Forum, 2022
2. Koo, B, and Shin, B. Using Geometry based Anomaly Detection to check the Integrity of IFC classifications in BIM Models, Journal of KIBIM, 2017
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/~ Out-of-distribution detection with neural-network ensembles

A Ensemble-based networks classify extrapolation based on an ensemble of S I
pre dlC tlons - . —— Individual model predictions
.. : . . PP : =)
*  Main idea: Identical networks with different initializations result in 2w
different predictions for out-of-distribution data =
o
* Relies on stochastic initialization g
* Prediction variance can be used to quantify network uncertainty 00
* Pros: i 3 2 1 0 X
: Input feature,
*  Works well for high-dimensional features space »

I Training interval

* Gives non-binary results that can be used to assign confidence
* Occam’s razor: idea is simple, interpretable, and easy to implement
* Cons:

* Empirical

Variance, log,, (\f’al‘(y))

* Variance of ensembles is not reflective of true uncertainty ’ ’ - - :

 Variance of ensembles depends on numerous factors (number of Input feature, z

epochs, regularization, network architecture, etc.)

* Each evaluation of the MLP is more expensive

[1] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty using deep ensembles, NEURIPS, 2017.

Example of deep ensembles for learning y=x"3
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/" Qut-of-distribution detection with neural-network ensembles

Approach: select a model architecture NN : (1; W) > da BN
Train M neural networks for weights W1, ..., Wy,

At run time evaluate the empirical mean and variance of the networks
1 (& TBNN 1 2 TBNN12
TBNN7 — R = ‘W —_
E[sa"™] = o (;:1 NN(/I,W,)) Var[6a "] = i ;:1, (NN(A;w;))” —E[éa""]"

Employ the prediction

0.2

5qTBNN _ prior E[6 aTBNN]

model = 52 4 Var[§aTBNN]
prior

* Based on a Bayesian update with assumed Gaussians and a zero-mean prior discrepancy
Prediction depends on Oprjor parameter

e Tune from calibration on training/validation set

-

g

Challenges that need to be addressed:

e Data and model inconsistency can be an issue (TKE RANS != TKE DNS) J




/" Data and model consistency
‘4

/¢ Discrepancy TBNN approximates the Reynolds stress as

/

2
pTij = —p’l,l,,ll’l,l,'7 E— —-pkdm _ 2pk (a’iR:ANS e 5aiT'BNN)
3 J J

* Significant challenge: High-fidelity turbulence quantities are not equivalent to RANS turbulent quantities due to
model form error in, e.g., the TKE equation

e Example: Turbulent kinetic energy in flow over a periodic hill

0000055

0.000m

e What value of turbulent kinetic energy should be used to train an ML model?

e Even with perfect Reynolds stress prediction, RANS TKE will differ from true TKE due to model form error



Training workflow

e Baseline approach employed by Ling et al.

* Significant issue:

e Learns Reynolds stress fields from deficient features (particularly TKE)
e Should lead to generalization errors
e Can be philosophically unsatisfying. Better to have a model that is embedded in

the code and called at each iteration




Training workflow

* Qur first approach

e Approach is still promising, but lacks robustness

e Hard to converge solvers with injected anisotropy tensor
 In practice we can never learn the true anisotropy, so we still have an inconsistency

» Requires full-field high-fidelity data, which limits available training sets




Training workflow

e Use the TBNN within the training process to get more consistent features

=
=

/

Training (offline) workflow

/

Testing (online)
workflow

\_




/" Summary
4

/7~ * Employing discrepancy tensor-basis neural networks

/

e Correct, rather than replace, a prediction for the Reynolds stress

e Detecting extrapolation based on ensembles of neural networks

¢ 10 networks are better than one!

e Reducing training data inconsistencies by employing two step training process
e Deploy a “frozen” TBNN on a given case

e [earn mapping from resulting RANS features to true anisotropy







/" Solver and implementation details

/ e Discrepancy tensor-based neural networks are implemented in Sandia’s Parallel Aerodynamics and Reentry code (SPARC)

/ » Supports finite volume, finite difference, and finite element (CG & DQG) discretizations

O

Vanilla deep neural network library was developed and added to SPARC

e Interfacing to PyTorch C++ backend was extremely slow due to SPARC kernels

Discrepancy TBNNs are only queried every 10 iterations to accelerate solver performance

Sensitivities to the TBNN are not included in the Jacobian routines
e Cases can take a long time to converge

e We are investigating integrating this with automatic differentiation

TBNN-predicted Reynolds stresses are NOT used in the TKE and dissipation equations

e Why? A good idea, but model constants are calibrated off of the Boussinesq relationship and should be recalibrated if we do this

All cases are run unsteady with BDF1 and a CFL controller to reach a steady state ‘



/" Training data and their sources

,/  We employ a mix of DNS, LES, and experimental data

/"« DNS =
e Channel flow at Re, = 180,395, and 590 from Jimenez [1] :“ .
e Duct flow at Re=3500 from Pinelli et al. [3] ” -
e Wavy wall flow at Re=6850 [5] L S -
Wavy wall Duct flow
e Flow over a periodic hill from Temmerman et al. [2]
e Experimental: =
e Jet-in-crossflow from Beresh et al. [4] ; o
 Intentionally did not include: - .

e Experimental data from any of the test cases

Periodic hill

e LES over NASA wall mounted hump Jetin cross flow

e ZPG boundary layer data

[1] Sergio Hoyas and Javier Jimenez, (2008) "Reynolds number effects on the Reynolds-stress budgets in turbulent channels", Phys. Fluids, Vol. 20, 101511.

[2] Temmerman, L. and Leschziner, M. A., 2001. "Large Eddy Simulation of separated flow in a streamwise periodic channel construction," Int. Symp. on Turbulence and Shear Flow
Phenomena, Stockholm, June 27-29.

[3] Pinelli, A., Uhlmann, M., Sekimoto, A., Kawahara, G. 2010 Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107-122.

[4] Beresh, S.J., Henfling, J. F., Erven, R. J., & Spillers, R. W, “Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow,” AIAA Journal, Vol. 43, No. 2, 2005,

pp- 379-389
Y Only One ensemble Of TB NNS iS trained On all the data E;S;;ilg,}glélérjl%){,zM, Larsson, J., and laccarino, G., “Epistemic Uncertainty Quantification for RANS Modeling of the Flow over a Wavy Wall,” Center for Turbulence Research Annua‘



/" Neural network details

v

g Model the anisotropy tensor as ‘

10
aij = alANS 4 §aTBNN = gRANS | ng()\)Tfj > Tensor basis, e.g, 9
i=1

Regression model, e.g., MLP

1] 1] 1]

Employ 7 features > Frame-invariant feature, e.g.,  trace (S;;S;x)

A=[Tr(s*2) Tr(Q?) Te(S) Tr(R?S") Te(RS*2) log(u/u) dik|.

Employ a tensor basis of order 4:

1 1
T! =8, T?=8'Q* - Q*S*, T; =S** - 31 Tr(S*%) T* = Q** - ]1 Tr(Q*?)

Model architecture: MLP with depth of 5 and 40 neurons per layer

Training: L2 penalty with regularization, 5000 epochs

Strain rate and rotation rate were non-dimensionalized by

S ) Q

S* = - QF = -
7 TSl AP

Ensemble size of 10

Models are trained using multistep approach outlined earlier
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/’* Relevant training sets added:

e Channel flow at three Reynolds numbers

e Duct flows

e High level summary of results:

30
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u+ at x = 0.97

e Improved skin friction

e Strange “hump” in the buffer layer

10g10(y+) at x = 0.97

Velocity profile

Skin friction, C/

/" Results: Zero pressure gradient flat plate boundary layer

Flat Plate Boundary Conditions,
M=0.2, Re_ =5 million (L=1), T = 540 R

farfield Riemann BC
-«— PU/P =1.02828,
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/" Results: Channel flow

//* Relevant training sets added:

e Channel flow at three Reynolds numbers

* Notes: Problem solved on a periodic domain

 challenges converging regular solver (with no ML) on non-periodic domain

e High-level summary of results

e Improved center-line velocity

e Similar hump is observed

* High levels of uncertainty away from the wall (no training data)

40

35 1

30 1

25 1
—|— 20-
3

15

10 4

—— SPARC (k —¢)
—— TBNN
—==' Theory (inner)

Theory (LOTW, k=0.41, B=5.0)
Theory (LOTW, k=0.39, B=4.2)
Theory (LOTW, k=0.37, B=3.13)
Theory (Coles)

1
1
1
1
]
1
]
1
1
T
1

0 1 2 3 4

logio(y+)

Velocity profile

Turbulent "fully developed” Channel Flow BCs
M=0.2, Re=80 million per channel height, T =520 R
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Pt/P  =1.02828,
2 TuT,,, = 1.008,
| 1 quantity from interior
15F adiabatic solid wall
" | P/P =0.945,
“ cf.)ther quantities
o | rom interior
> 1 ‘
g 1 »
0.5F |
oF : 1
-0.5F adiabatic solid wall
1L 1 1
0 500
X (axes not same scale)
1.50 //\Vﬂ\\,f\
W/\
1.25 /
1.00 A
Nea =
y S 075
0.50
0.25 1
0.00

1

4 5 6

logyo(y+)

Reynolds stress w/ 1 std uncertainty




'/~ Results: Axisymmetric jet

1.0 1 O exp

— ke
/ 0.9 2) —— k¢ TBNN

/e« Relevant training sets added:

Z

 Jet-in-crossflow (experimental) 3

b‘\

* Notes: S
e Problem failed with out JIC data in training set

e Difficult to fully converge the solver 031

e High-level summary of results D 5 10 5 2 B %
: : x/D;
* Improved centerline velocity [ Die

. Centerline velocity as a function of downstream distance
e Mixed results on Reynolds stress

» Overprediction of velocity at jet exterior

Y/ Djet
y/Djet

7.5 10.0 . . . . . . . 10.0 12.5
z/Djer /Djer
Comparison of standard k-eps (top) to experimental data (bottom) Comparison of discrepancy TBNN (top) to experimental data (bottom)



//Results: Axisymmetric jet
x/Diet = 2.0 Q?/Djet = 5.0
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/A{esults: Axisymmetric jet

LU/Djet = 2.0 x/Djet =5.0
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/~ Results: Axisymmetric jet
‘4

/ * A side notes: Problem failed without jet in crossflow data in training set
/ e Ensembles were “confidently” predicting the wrong answer
* Non-uniqueness of feature space?

* We are still investigating this, but indicates that ensembles don’t solve all the problems
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Centerline velocity as a function of downstream distance
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Pressure coefficient, -C),

e High-level summary of results

/~ Results: Nasa hump

//» Relevant training sets added:

* Flow over periodic hill and wavy wall

e Improved skin friction and pressure coefficient

* Improved prediction of separation bubble
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/" Results: Nasa hump

r/c=0.8 z/c=10.9 x/c=1.0
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/~ Results: Nasa hump
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/ Re Sults : NACA airfOil NACA 0012 Boundary Conditions.

600 M=0.15, Re =6 million (c=1). T =540R

\\

tfarfield Riemann BC

//» Relevant training sets added: 400

__ W TN
4 * Channel flow T oot vot o
. . . ok N
e Flow over wavy wall and periodic hill : \
-200
* High-level summary of results ; \
-400f N
\_/ﬁ
e Results are unchanged from the standard model ool
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i Conclusions

,/ Discussed our workflow for developing data-driven turbulence models for the compressible RANS equations
/ o Approach is based on three core concepts:

o Discrepancy tensor-basis neural networks that correct, rather than replace, a RANS model’s prediction for the Reynolds
stress

o Extrapolation detection that identifies when a model is trustworthy

o Improved feature consistency to minimize discrepancies between the training and testing stage

o Approach was demonstrated on the NASA testing challenge

o Positive results:
o Qol results tended to be better in 4/5 cases (flat plate, channel, axisymmetric jet, NASA hump)
o Qol results were unchanged for the airfoil cases
o Field results compared better with the PIV for the axisymmetric jet and NASA hump

o We were able to leverage DNS, LES, and experimental data

o Concerning results that require attention:

Predicted anisotropy fields are noisy, this needs to be fixed

@)

Weird bump in the transition from the inner to outer layer in wall-bounded flows (unbalanced training data set?)

@)

o Model failed catastrophically on axisymmetric jet without jet in crossflow training data
o Ensembles are helpful for extrapolation detection, but don’t solve the problem completely
o Inconsistency in TKE remains an issue

o Need more training data




Thank you!
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