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Conservation laws as embedded symmetries
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Data-driven physics represented as symmetries and 
equations
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1D Viscous Burgers’ Equation
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Adding structure to the model increases interpretability
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The need for a differentiable solver

• We’re learning a dynamical equation

• The simpler approach
• Generate high-fidelity solutions

• Filter solutions and compute closure term

• Learn the function mapping !𝑢 to the closure term

• Want to learn a-posteriori velocity à evolve coupled 
system together during training
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The need for a differentiable solver
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Adjoint method
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Daulbaev, Talgat et al. "Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs." (2020).
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Learning methodology

• Desire to learn a one-equation closure transport model for 
Burgers’ equation
• Neural network approximates 𝜈! IC and convection/diffusion 

coefficients of the transport equation in Fourier space

• Data generated on fully-resolving dense grid
• ODE system integrated to produce approximate velocity 

profiles
• Loss is backpropagated via adjoint method to compute NN 

parameter gradients



15

Results

• Model training:

• Random initial condition
• 𝑡 = 0 to 5
• 𝜈 = 5×102! to 5×1023
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𝜈!

Train Test
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Discussion

• 1-eqn learned transport model for eddy viscosity effective for sub-grid 
modeling of Burgers’ equation

• Interpretable model à improve physical understanding

• Stationary eddy viscosity for time-varying system

• Model fails at high viscosities à can we learn to “switch off?”

• Scaling to higher dimensions, Navier-Stokes



Equivariant Turbulence 
Predictions



Scaling up introduces challenges
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Graph Message-Passing Neural Networks
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Equivariance
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Tensor Products

𝑚!"# = 𝑾𝒉"𝒉(

𝒉%
𝑚"!"

𝑚!"# = 𝒉"⨂𝑾𝒂$"

𝒉 𝒂

𝑚&!"

Scalar productVector-scalarTensor product
𝑾

1

𝑾.×.

Tensor product visualization from e3nn package: https://e3nn.org/

Innerproduct



26

Equivariant GNNs

𝒉(

𝒉%
𝒉&"#

𝒉4!"
567 = 𝑓1(𝒉4!"

5 , 𝒉85 , 𝒉95)

𝑓! = [𝒉&!" , 𝒉* , 𝒉+]⨂
𝑾(2!")𝑌45 𝒓*+

𝑾(𝑟*+) = 𝑀𝐿𝑃 𝒓*+



27

Architecture
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Learning Methodology

• Desire to learn steady-state eddy viscosity from mesh point 
cloud and initial pressure/velocity fields
• Neural network approximates 𝜈" using equivariant graph network

• Data generated using Spalart-Allmaras turbulence model
• Approximate 𝜈+ field used in incompressible solver

• Only pressure/velocity equations solved

• A-posteriori analysis of solution fields
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2D Fully Developed Channel Flow (Reh=80m)

https://turbmodels.larc.nasa.gov/channelflow_val.html
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2D Zero Pressure Gradient Flat Plate (Rex=5m)

https://turbmodels.larc.nasa.gov/flatplate_val.html
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2D Wall Mounted Hump Rec=936k

https://turbmodels.larc.nasa.gov/nasahump_val.html
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2D Wall Mounted Hump Rec=936k

https://turbmodels.larc.nasa.gov/nasahump_val.html
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2D Wall Mounted Hump Rec=936k

https://turbmodels.larc.nasa.gov/nasahump_val.html
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Conclusions and future directions

• Differentiable physics à more interpretable data-driven methods

• Symmetry-respecting architectures as best candidates for learning in 
the low-data regime

• Can we make strides towards fully differentiable N-S solvers?

• Can we leverage the advantages of DNN scaling and equivariant 
architectures to learn more robust turbulence models?
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