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Motivation

Feasibility of high-fidelity CFD for design process

- State-of-the-art practices in wind turbine design

Shortcomings of the current RANS based CFD

- Need for improvements in Turbulence and Transition models
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Field Inversion and Machine Learning Methodology

Challenges with data-driven modeling

- Data is not available in the form that is directly usable
- High-fidelity CFD based data is also not coherent with RANS
model quantities

Physics-consistent and data-driven modeling technique

- Duraisamy et. al. (2015)
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Field Inversion and Machine Learning Methodology

The transport equation of the SA model is

Dν̃

Dt
= Pν̃ −Dν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃)+ cb2(∇ν̃)2

]

A functional correction is introduced into the turbulence
model through the field function β

Dν̃

Dt
= β Pν̃ −Dν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃)+ cb2(∇ν̃)2

]
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Field Inversion Process

An optimization problem is posed to identify the appropriate
correction field for a particular flow scenario

β
∗ = argmin

β

 J(β ,dtrue)︸ ︷︷ ︸
Consistency with experiments

+λ ∥β −βprior∥2︸ ︷︷ ︸
Limiting large deviation


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Machine Learning Process

Appropriate small set of flow features (η) are identified and a

functional (β̂ (η)) is modeled using the data obtained from the
Field Inversion

η = {P/D, |S |/|Ω|,δ ,χ}

This correction is now embedded in the baseline turbulence model

Dν̃

Dt
= β̂Pν̃ −Dν̃ +

1

σ

[
∇ · ((ν + ν̃)∇ν̃)+ cb2(∇ν̃)2

]
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ML Training with Ensemble Averages

β̂ = ∑
i

wi β̂
(i)

Generates simpler ML architectures, which are in some sense
”generalizable”

Avoids overfitting of the data

Can be appropriately tuned to mimic the ”memory effect”

Imposes additional requirements and/or additional computational
overhead
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S809 Airfoil - Experiments vs Baseline

Figure: Comparison of the baseline SA model with experiments
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Field Inversion Results (AoA = 10◦,14◦)
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Improvements in Lift Coefficient

Figure: Improvements in Lift coefficient
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Drag Polar Predictions

Figure: Improvements in Drag polar
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Validation Case: NACA0012 Airfoil - Lift Predictions

Figure: Improvements in Lift Coefficient
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Validation Case: NACA0012 Airfoil - Drag Predictions

Figure: Drag coefficient predictions
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Validation Case: NACA0012 Airfoil - Surface Pressure
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Portability of the Model
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Validation Case: ZPG Flat Plate

Figure: Skin Friction Coefficient Prediction
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Validation Case: ZPG Flat Plate

Figure: Correction field for the ZPG Flat Plate Case
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Validation Case: ZPG Flat Plate

Ideally, the correction term should vanish or is negligible (β ≡ 1)
for this case

Given that a sudden velocity jump occurs at the leading edge, is
the theoretical self similarity valid near the leading edge?

Also any poor choice of the input features can falsely correlate to
the correction term
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Summary

A paradigm to achieve memory effect in FIML methodology is
proposed, and tested on flows over S809 airfoil

The trained correction model is tested for portability and solver
independence

The modifications resulted in improved predictions of airfoil flow
physics and stall scenario
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Key Takeaways

While FIML improves the predictions in flow scenarios similar to the
trained cases, the generalizability of such correction is questionable

Human intervention is absolutely necessary and must come in the
form of the expertise in feature selection, identifying appropriate
”representative” flow cases for training, imposing rigid constraints,
etc.

There is always a possibility of overfitting with ML, and can be
mitigated using extremely simple architectures and robust training
methodologies
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