

Developing hierarchical augmentations via the "Learning and Inference assisted by Featurespace Engineering (LIFE)" framework

NASA 2022 Symposium on Turbulence Modeling Roadblocks, and the Potential for Machine Learning July 27-29, 2022

Vishal Srivastava, Karthik Duraisamy

Department of Aerospace Engineering, University of Michigan, Ann Arbor

Background

LIFE

Hierarchical Augmentation

Summary

Motivation

Background – Integrated Inference and Machine Learning

Motivation

Background

LIFE

Hierarchical Augmentation

Summary

$$m{w}^* = rg\min_{m{w}} \sum_k \left(lpha_k \mathcal{C}^k(m{y}_{ ext{data}}^k, m{y}_{ ext{pred}}^k(m{ ilde{u}}_m^k; m{\xi}^k)) + rac{\lambda_k \mathcal{R}^k(m{ ilde{u}}_m^k, m{w}, m{\xi}^k)}{k}
ight)$$

s.t.
$$\mathscr{R}_{m,\mathrm{aug}}(\widetilde{m{u}}_m^k;eta(m{\eta}(\widetilde{m{u}}_m^k);m{w}),m{\xi}^k)=0$$

Background

LIFE

Hierarchical Augmentation

Summary

Learning and Inference assisted by Feature-space Engineering

Where to augment?

- ⇒ What is the intended correction?
- ⇒ How will the augmentation affect cases where correction is not required?
- ⇒ Physics-based limiting or regularization possible?

How to design feature-space?

- ⇒ Improve generalizability
- Features chosen by a modeler
- Non-dimensionalized using model quantities
- ⇒ Ensure predictive accuracy
- Enough features to roughly ensure a one-to-one features-to-augmentation map
- ⇒ Minimize extrapolation
- Bounded
- Parsimonious set of features

Which function class to use?

- ⇒ If available data populates the entire feature-space
- Neural Networks, Decision Trees
- Custom-built functions
- ⇒ Otherwise
- Localized learning

Background

LIFE

Hierarchical Augmentation

Summary

Application: Bypass Transition

Adding an augmented bare-bones intermittency equation (inspired by Durbin's model of 2012) to Wilcox's 1988 k- ω model

$$\begin{split} \frac{D\rho k}{Dt} &= \boldsymbol{\nabla} \cdot ((\mu + \sigma_k \mu_t) \, \boldsymbol{\nabla} k) + \gamma \left(\mu_t \Omega^2 - \frac{2}{3} \rho k \frac{\partial u_i}{\partial x_j} \delta_{ij} \right) - C_{1k} \rho \omega k \\ \frac{D\rho \omega}{Dt} &= \boldsymbol{\nabla} \cdot ((\mu + \sigma_\omega \mu_t) \, \boldsymbol{\nabla} \omega) + C_{1\omega} \frac{\omega}{k} \left(\mu_t \Omega^2 - \frac{2}{3} \rho k \frac{\partial u_i}{\partial x_j} \delta_{ij} \right) - C_{2\omega} \rho \omega^2 \\ \frac{D\rho \gamma}{Dt} &= \boldsymbol{\nabla} \cdot ((\sigma_{\gamma,\ell} + \sigma_{\gamma,t} \mu_t) \, \boldsymbol{\nabla} \gamma) + \rho \Omega \left(\boldsymbol{\beta} - \gamma \right) \sqrt{\gamma} \end{split}$$

Replaced γ_{max} with augmentation and removed F_{ν} limiter

Intermittency transport equation smoothens augmentation field into intermittency field

Bounded augmentation: $0 \le \beta \le 1$ (as intermittency is driven by β)

Feature to help determine transition onset

$$Re_{\Omega} = rac{\Omega d^2}{2.188
u} \qquad \max_{d} Re_{\Omega} pprox Re_{ heta}$$

Physics-informed choice of features

Motivation

Background

LIFE

Hierarchical Augmentation

Summary

Praisner and Clark (J. Turbomachinery, 2007) gave the correlation

$$heta_{
m tr} pprox \sqrt{rac{7
u}{9\omega_{\infty}}}$$

Physics-based nondimensionalization

Then, we have
$$rac{Re_{ heta}}{Re_{ heta, ext{tr}}}pprox \max_{d}rac{Re_{\Omega}}{U_{\infty} heta_{ ext{tr}}/
u}pprox \max_{d}rac{\Omega d^2\sqrt{9\omega_{\infty}}}{U_{\infty}\sqrt{7
u}}$$

Freestream quantities are extracted from a constant wall distance.

Applying a conservative bound

$$\eta_1 = \min\left(rac{d^2\Omega\sqrt{9\omega_\infty}}{U_\infty\sqrt{7
u}},3
ight)$$

Bounded features

Background

LIFE

Hierarchical Augmentation

Summary

Feature(s) to identify laminar/turbulent regions

Compare ν and ν_t . What about the viscous sublayer, though?

Compare d and ℓ_t to see if d is significantly larger. For k- ω model, $\mathcal{O}(\ell_t) = \mathcal{O}(\sqrt{k}/\omega)$

Mathematically bound both the features as:

$$\eta_2 = rac{d}{d+\sqrt{k}/\omega}$$

$$\eta_3 = rac{
u}{
u_t +
u}$$

- Too many features over-specify physical conditions and reduce generalizability
- Too few features can result in lower predictive accuracy even for the training cases

Background

LIFE

Hierarchical Augmentation

Summary

What happens when off-the-shelf NNs are used?

$$\mathcal{C}^k = rac{1}{N^k} \sum_i^{N^k} \left(C_f^k(x_i) - C_{f, ext{data}}^k(x_i)
ight)^2$$

Relative cost reduction w.r.t. inference iterations

Skin friction coefficient for T3A

Skin friction coefficient for T3C1

Background

LIFE

Hierarchical Augmentation

Summary

Limited data necessitates localized learning

- C⁰-continuous
- Susceptible to curse of dimensionality
- Choice of grid resolution is crucial

For a feature space location in the shaded region, the multilinear expression reads

$$eta = eta_{00} + (eta_{10} - eta_{00})\eta_1 + (eta_{01} - eta_{00})\eta_2 + \cdots \ (eta_{11} + eta_{00} - eta_{10} - eta_{01})\eta_1\eta_2$$

Background

LIFE

Hierarchical Augmentation

Summary

A C⁰-continuous augmentation (Training)

- Feature-space uniformly discretized into 45x15x15 cells
- Excellent solver convergence compared to a discontinuous functional form for the augmentation
- Cost function was the sum squared discrepancy in the C_f profile

Background

LIFE

Hierarchical Augmentation

Summary

How does the feature-space look?

For all plots:

X-axes: η_2 (0 to 1)

Y-axes: η_3 (0 to 1)

Background

LIFE

Hierarchical Augmentation

Summary

A C⁰-continuous augmentation (Testing – FPG)

Good generalizability to zero and favorable pressure gradient cases

Background

LIFE

Hierarchical Augmentation

Summary

A C⁰-continuous augmentation (Testing – APG)

Worse predictions for cases involving transition in adverse pressure gradient regions

Background

LIFE

Hierarchical Augmentation

Summary

Prediction on a compressor cascade (LES from RTRC)

- Transition predicted near separation location
- Downstream discrepancy results from inadequacy in underlying turbulence model

Background

LIFE

Hierarchical Augmentation

Summary

Inferring a Hierarchical Augmentation

$$rac{D
ho\gamma}{Dt} = oldsymbol{
abla} \left(\left(\sigma_{\gamma,l} \mu + \sigma_{\gamma,t} \mu_t
ight) oldsymbol{
abla} \gamma
ight) +
ho\Omega(oldsymbol{eta_1}eta_2 - \gamma)\sqrt{\gamma}$$

- Feature space uniformly discretized into $30 \times 10 \times 10$ cells for hierarchical augmentation
- Cost function was the sum squared discrepancy in the wall shear stress profile
- Using the hierarchical augmentation as is results in poor predictions on the flat plate cases

Background

LIFE

Hierarchical Augmentation

Summary

Designing a physics-informed blending function

$$rac{D
ho\gamma}{Dt} = oldsymbol{
abla} \left(\left(\sigma_{\gamma,l} \mu + \sigma_{\gamma,t} \mu_t
ight) oldsymbol{
abla} \gamma
ight) +
ho (eta_1 eta_2^{oldsymbol{\sigma}} - \gamma) \sqrt{\gamma} \Omega_1^{oldsymbol{\sigma}}$$

$$\sigma = rac{1}{1+\expigg(-rac{f_{\sigma}+0.05}{0.003}igg)}$$

$$\sigma = rac{1}{1 + \exp\left(-rac{f_{\sigma} + 0.05}{0.003}
ight)} \hspace{0.5cm} f_{\sigma} = \left(rac{\sqrt{
u/\Omega}(oldsymbol{n}_w\cdotoldsymbol{
abla})\Omega}{\sqrt{
u/\Omega}|(oldsymbol{n}_w\cdotoldsymbol{
abla})\Omega| + \Omega}
ight) \left(rac{\omega}{\sqrt{2}\Omega + \omega}
ight) .$$

Background

LIFE

Hierarchical Augmentation

Summary

Predictions using the hierarchical augmentation

Background

LIFE

Hierarchical Augmentation

Summary

Predictions using the blended hierarchical augmentation

Blending function affects (and slightly improves) predictions for transition in APG regions

Background

LIFE

Hierarchical Augmentation

Summary

Summary

- A C⁰-continuous augmentation function provides excellent solver convergence and added implicit regularization
- The LIFE framework was used to infer two augmentations:
 - β_1 inferred from *two flat plate cases*
 - Training cases involved transition of attached flows in zero/favorable pressure gradients
 - Transition predictions generalize to unseen zero/favorable pressure gradient configurations well
 - Transition is predicted significantly upstream in adverse pressure gradient regions
 - β_2 subsequently inferred from <u>one compressor cascade case</u>
 - Training case involves separation-induced transition
 - Transition location predictions significantly improve across all test configurations
 - Transition is predicted slightly upstream compared to what is observed from the LES data in some instances
- An appropriate blending function (σ) was designed to shield attached flow regions from the effects of the second (hierarchical) augmentation
- Future work will include exploring purely local feature candidates and the blending function in addition to building a formal framework to optimize hyperparameters for localized learning