

Toward the use of convolutional neural networks as a postprocessing enhancement to RANS-modeled turbulence

Presented by

Alec Brodeur

Engineer, Hypersonic Design Integration & Analysis Branch Naval Surface Warfare Center Dahlgren Division

John Romano

Head, Hypersonic Design, Integration & Analysis Branch Naval Surface Warfare Center Dahlgren Division

July 28, 2022

The Leader in Warfare Systems Development and Integration

Agenda

- Introduction
- Theory
 - Datasets
 - Computational Fluid Dynamics (CFD) Modeling
 - Convolutional Neural Networks (CNN) Modeling
 - Hyperparameter Optimization
- Results and Discussion
- Continuing Work

Introduction

- Increased computational power has enabled meaningful advances in machine learning (ML) and the prevalence of high-fidelity, CFD simulation datasets
- Modest progress made toward leveraging ML models to improve predictions of flow-field behavior computationally^[1] and to more accurately measure fluid phenomena experimentally ^{[2]-[4]}
 - 1. To increase simulation fidelity by using ML to augment solution algorithms and physical models (such as those describing turbulent behavior in Reynolds-Averaged Navier-Stokes (RANS) simulations), and
 - 2. To reduce solution runtimes by leveraging reduced-order modeling or super-resolution techniques

^{1.} K. Duraisamy, G. laccarino, and H. Xiao, "Turbulence Modeling in the Age of Data," pp. 1–23, 2019.

^{2.} S. L. Brunton, B. R. Noack, and P. Koumoutsakos, "Machine Learning for Fluid Mechanics," Annu. Rev. Fluid Mech., vol. 52, no. 1, pp. 477–508, 2020.

^{3.} K. Taira et al., "Modal analysis of fluid flows: Applications and outlook," AIAA J., vol. 58, no. 3, pp. 998–1022, 2020.

^{4.} N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton, M. W. Mahoney, and J. N. Kutz, "Shallow neural networks for fluid flow reconstruction with limited sensors," *Proc. R. Soc. A Math. Phys. Eng. Sci.*, vol. 476, no. 2238, p. 20200097, 2020.

Objective

- Previous study^[5] extended existing literature^[6] in reduced-order modeling and considered CNN models predicting *high-accuracy* vorticity fields from *low-accuracy* vorticity fields for transonic, 4-digit NACA airfoils at high angles of attack
 - Results showed promise but required further improvements and generalizations
- Recent efforts studied other field variables and increased predictive capability
- Improvements realized by hyperparameter optimization

^{5.} J. Romano and O. Baysal, "Convolutional-neural-network-based Auto-encoder for Synthetic Upscaling of Computational Fluid Dynamics Simulations." *AIAA SCITECH 2022 Forum*, p. 0186. 2022.

^{6.} L. Agostini, "Exploration and prediction of fluid dynamical systems using auto-encoder technology," *Phys. Fluids*, vol. 32, no. 6, p. 067103, 2020.

Theory – CFD Modeling

- NASA's Fully Unstructured Navier-Stokes 3D (FUN3D) generated the simulations
 - Transient calculations with 1st order temporal discretizations, 75 subiterations, and max CFL of 10
 - Closure from SA model for URANS and SA-based DES formulations
 - 500 start-up time-steps resolved start-up transients, followed by a 100 time-step sampling period
 - Separate computational grids for URANS and DES calculations
- CFD simulation data linearly interpolated onto a Cartesian grid for CNN processing
 - Datasets replicated with different scales and translations to create larger datasets for training and testing
 - 176 x 512 (H x W) data points

Table 1: CFD grid metrics

for chord length c	URANS Grid	DES Grid
Farfield radius	10 <i>c</i>	10 <i>c</i>
Span	0.06 <i>c</i>	0.06 <i>c</i>
Airfoil circumferential partitions	550	2,500
Radial partitions	125	500
Spanwise partitions	10	60
Wall initial cell height	5e-5 <i>c</i>	1e-5 <i>c</i>

Theory: Data Preprocessing

Fig. 1: Data preprocessing grid transformation schematic

Table 2: Description of dataset preprocessing

Car	tesian grid coordinate extents
x	$\in [(-0.5+t)sc, (2.5+t)sc]$
у	$\in [-0.3sc, 0.3sc]$
S	∈ [0.8, 0.9, 1, 1.1, 1.2]
t	$\in [-0.2, -0.1, 0, 0.1, 0.2]$
Car	tesian grid dimension
Н	176
W	512

Theory – Datasets

- Time-averaged unsteady RANS (low-accuracy) and DES (high-accuracy) CFD calculations used as training and testing datasets
- All cases run at Mach 0.728 with sea-level atmospheric conditions
- Vorticity magnitude, density, and pressure ere flow-field variables for the current study
- Two studies considered sensitivity to
 - Variation in geometry (NACA0006, NACA0012, NACA2412, NACA4412), and
 - Variation in angle of attack (NACA0006 at $\alpha = -30$ to 30)
- This presentation focuses on results for the angle of attack study with pressure

Table 3: Description of datasets

Study	Training Dataset	Testing Dataset
α Sensitivity	NACA0006 $\alpha \in [-30^{\circ}, -10^{\circ}, 0^{\circ}, 10^{\circ}, 30^{\circ}]$	NACA0006 $\alpha \in [-20^{\circ}, 20^{\circ}, 25^{\circ}]$
Geometry Sensitivity	NACA0006 $\alpha \in [20^{\circ}, 30^{\circ}]$ NACA0012 $\alpha \in [20^{\circ}, 30^{\circ}]$ NACA4412 $\alpha \in [20^{\circ}, 30^{\circ}]$	NACA0006 $\alpha = 25^{\circ}$ NACA0012 $\alpha = 25^{\circ}$ NACA4412 $\alpha = 25^{\circ}$ NACA2412 $\alpha \in [20^{\circ}, 25^{\circ}, 30^{\circ}]$

Theory – CNN Modeling and Optimization

- Separate CNN autoencoder networks generated for each study
- Questions about network shape in SciTech led to the idea that the shape (and other hyperparameters) should be solved by an optimizer
- Used the Sequential Model-based Algorithm Configuration (SMAC) Python library^[7] to optimize hyperparameters
 - Random forest search determined optimal configuration from predefined search space
- Considered the broad search space in Table 4

Fig. 2: Representative CNN autoencoder model schematic

Table 4: Hyperparameter search space

Hyperparameter	Туре	Search Space	Default Value (SciTech 2022)	Optimal (based on loss function)
Convolutional Filters	Integer	[10:100]	48	35
Activation Function	Category	sigmoid relu elu tanh selu	sigmoid	tanh
Filter/Pooling Kernel Size	Category	[2,4,8]	2	2
Number of Convolution Layers	Integer	[1:4]	3	2
Network Optimizer	Category	adam adadelta adagrad adamax nadam	Adadelta	adam
Loss Function	Category	mse mae mape msle	msle	msle
Latent Space Dimension	Integer	[5:50]	12	46

^{7.} F. Hutter, J. Lücke, and L. Schmidt-Thieme, "Beyond Manual Tuning of Hyperparameters," KI - Kunstl. Intelligenz, vol. 29, no. 4, pp. 329–337, 2015.

Model and Training History Comparison

Fig. 3: Training histories for SciTech 2022 and optimized models

Layer (type)	Output Shape	Param #	Connected to
input (InputLayer)	[(None, 176, 512, 1		
batch_normalization (BatchNorma	(None, 176, 512, 1,	4	input[0][0]
noise (GaussianNoise)	(None, 176, 512, 1,	0	batch_normalization[0][0]
conv3d (Conv3D)	(None, 176, 512, 1,	1248	noise[0][0]
max_pooling3d (MaxPooling3D)	(None, 88, 256, 1,	4 0	conv3d[0][0]
conv3d_1 (Conv3D)	(None, 88, 256, 1,	9 41568	max_pooling3d[0][0]
max_pooling3d_1 (MaxPooling3D)	(None, 44, 128, 1,	9 0	conv3d_1[0][0]
conv3d_2 (Conv3D)	(None, 44, 128, 1,	1 166080	max_pooling3d_1[0][0]
max_pooling3d_2 (MaxPooling3D)	(None, 22, 64, 1, 1	9 0	conv3d_2[0][0]
flatten (Flatten)	(None, 270336)	0	max_pooling3d_2[0][0]
bottleneck (Dense)	(None, 12)	3244044	flatten[0][0]
dense (Dense)	(None, 270336)	3514368	bottleneck[0][0]
reshape (Reshape)	(None, 22, 64, 1, 1	9 0	dense[0][0]
concatenate (Concatenate)	(None, 22, 64, 1, 3	В 0	reshape[0][0] max_pooling3d_2[0][0]
up_sampling3d (UpSampling3D)	(None, 44, 128, 1,	3 0	concatenate[0][0]
conv3d_transpose (Conv3DTranspo	(None, 44, 128, 1,	1 663744	up_sampling3d[0][0]
concatenate_1 (Concatenate)	(None, 44, 128, 1,	2 0	conv3d_transpose[0][0] max_pooling3d_1[0][0]
up_sampling3d_1 (UpSampling3D)	(None, 88, 256, 1,	2 0	concatenate_1[0][0]
conv3d_transpose_1 (Conv3DTrans	(None, 88, 256, 1,	248928	up_sampling3d_1[0][0]
concatenate_2 (Concatenate)	(None, 88, 256, 1,	1 0	conv3d_transpose_1[0][0] max_pooling3d[0][0]
up_sampling3d_2 (UpSampling3D)	(None, 176, 512, 1,	0	concatenate_2[0][0]
conv3d_transpose_2 (Conv3DTrans	(None, 176, 512, 1,	172848	up_sampling3d_2[0][0]
output (Conv3DTranspose)	(None, 176, 512, 1,	49	conv3d_transpose_2[0][0]

Fig. 4: SciTech 2022 Model Description

Output Shape	Param #
[(None, 176, 512, 1, 1)]	0
(None, 176, 512, 1, 1)	4
(None, 176, 512, 1, 35)	175
(None, 88, 256, 1, 35)	0
(None, 88, 256, 1, 35)	140
(None, 88, 256, 1, 70)	9870
(None, 44, 128, 1, 70)	0
(None, 394240)	0
(None, 46)	18135086
(None, 394240)	18529280
(None, 44, 128, 1, 70)	0
(None, 88, 256, 1, 70)	0
(None, 88, 256, 1, 70)	19670
(None, 176, 512, 1, 70)	0
(None, 176, 512, 1, 35)	9835
(None, 176, 512, 1, 1)	36
	[(None, 176, 512, 1, 1)] (None, 176, 512, 1, 1) (None, 176, 512, 1, 35) (None, 88, 256, 1, 35) (None, 88, 256, 1, 35) (None, 88, 256, 1, 70) (None, 44, 128, 1, 70) (None, 394240) (None, 46) (None, 44, 128, 1, 70) (None, 44, 128, 1, 70) (None, 88, 256, 1, 70) (None, 88, 256, 1, 70) (None, 88, 256, 1, 70) (None, 176, 512, 1, 70) (None, 176, 512, 1, 35)

Total params: 36,704,096 Trainable params: 36,704,024 Non-trainable params: 72

Model: "model"

Fig. 5: Optimized Model Description

Compare SciTech 2022 and Optimized Models

- Model comparisons given for time-averaged pressure field for NACA0006 airfoil
- Optimized model does a better job predicting the DES pressure field for the test dataset but creates low-resolution predictions
- Revisiting optimizer run to improve prediction resolution
 - Possibly set accuracy rather than loss function as an optimization objective
 - Potentially add more layers into system

Figure 6: Qualitative nondimensional pressure field predictions

Results/Discussion – Quantitative Errors

- CNN model errors evaluated quantitatively based on mean square error
- Optimized model generally outperforms SciTech 2022 model across all angles of attack in testing and training sets

Figure 7: Mean square error comparison between training and testing datasets

Conclusions/Path Forward

- CNN autoencoder model constructed to generate higher-accuracy flow field predictions based on lower-accuracy flow field inputs
- Pressure field predictions improved after hyperparameter optimization
 - More work required to increase predicted field accuracy
- Next steps to continuously improve predictive capability
 - Continue work with hyperparameter optimization
 - Consider other network architectures, such as GAN and HRNet
 - Consider alternative data preprocessing approaches and increased training

Glossary

AE autoencoder

CFD computational fluid dynamics

CFL Courant–Friedrichs–Lewy

CNN convolutional neural networks

CPU central processing unit

DES detached-eddy-simulation

FUN3D Fully Unstructured Navier-Stokes 3D

GAN Generative Adversarial Network

GPU graphics processing unit

HRNet High-Resolution Network

hrs hours

ML machine learning

MSE mean square error

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

RANS Reynolds Average Navier-Stokes

SA Spalart-Allmaras Model

SMAC Sequential Model-based Algorithm Configuration

URANS Unsteady Reynolds-Averaged Navier-Stokes

Acknowledgment

■ Dr. Oktay Baysal from Old Dominion University provided guidance to this work as a member of Mr. Romano's Ph.D. advisory committee.

Thank You

