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Introduction

 Increased computational power has enabled meaningful advances in machine
learning (ML) and the prevalence of high-fidelity, CFD simulation datasets

 Modest progress made toward leveraging ML models to improve predictions of flow-field 
behavior computationally[1] and to more accurately measure fluid phenomena 
experimentally [2]–[4]  

1. To increase simulation fidelity by using ML to augment solution algorithms and physical models (such 
as those describing turbulent behavior in Reynolds-Averaged Navier-Stokes (RANS) simulations), and

2. To reduce solution runtimes by leveraging reduced-order modeling or super-resolution techniques

1. K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence Modeling in the Age of Data,” pp. 1–23, 2019.

2. S. L. Brunton, B. R. Noack, and P. Koumoutsakos, “Machine Learning for Fluid Mechanics,” Annu. Rev. Fluid Mech., vol. 52, no. 1, pp. 477–508, 2020.

3. K. Taira et al., “Modal analysis of fluid flows: Applications and outlook,” AIAA J., vol. 58, no. 3, pp. 998–1022, 2020.

4. N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton, M. W. Mahoney, and J. N. Kutz, “Shallow neural networks for fluid flow reconstruction with limited sensors,” Proc. R. Soc. A Math. 
Phys. Eng. Sci., vol. 476, no. 2238, p. 20200097, 2020.
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Objective

 Previous study[5] extended existing literature[6] in reduced-order modeling 
and considered CNN models predicting high-accuracy vorticity fields from 
low-accuracy vorticity fields for transonic, 4-digit NACA airfoils at high 
angles of attack

 Results showed promise but required further improvements and generalizations

 Recent efforts studied other field variables and increased
predictive capability

 Improvements realized by hyperparameter optimization

5. J. Romano and O. Baysal, “Convolutional-neural-network-based Auto-encoder for Synthetic Upscaling of Computational Fluid Dynamics Simulations.” AIAA 

SCITECH 2022 Forum, p. 0186. 2022.

6. L. Agostini, “Exploration and prediction of fluid dynamical systems using auto-encoder technology,” Phys. Fluids, vol. 32, no. 6, p. 067103, 2020.
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Theory – CFD Modeling

 NASA’s Fully Unstructured Navier-Stokes 3D 
(FUN3D) generated the simulations
 Transient calculations with 1st order temporal 

discretizations, 75 subiterations, and max CFL of 10
 Closure from SA model for URANS and SA-based 

DES formulations
 500 start-up time-steps resolved start-up transients, 

followed by a 100 time-step sampling period
 Separate computational grids for URANS and 

DES calculations

 CFD simulation data linearly interpolated onto a 
Cartesian grid for CNN processing
 Datasets replicated with different scales and 

translations to create larger datasets for training
and testing

 176 x 512 (H x W) data points

for chord length c URANS Grid DES Grid

Farfield radius 10c 10c

Span 0.06c 0.06c

Airfoil circumferential partitions 550 2,500

Radial partitions 125 500

Spanwise partitions 10 60

Wall initial cell height 5e-5c 1e-5c

Distribution Statement A: Approved for Public Release, Distribution is Unlimited

Table 1: CFD grid metrics
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Theory: Data Preprocessing

Fig. 1: Data preprocessing grid transformation schematic
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Cartesian grid coordinate extents

𝑥 ∈ −0.5 + 𝑡 𝑠𝑐, 2.5 + 𝑡 𝑠𝑐

𝑦 ∈ −0.3𝑠𝑐, 0.3𝑠𝑐

𝑠 ∈ 0.8, 0.9, 1, 1.1, 1.2

𝑡 ∈ [−0.2,−0.1, 0, 0.1, 0.2]

Cartesian grid dimension

H 176

W 512

Table 2: Description of dataset preprocessing
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Theory – Datasets

 Time-averaged unsteady RANS (low-accuracy) and DES (high-accuracy) CFD calculations used as 
training and testing datasets

 All cases run at Mach 0.728 with sea-level atmospheric conditions

 Vorticity magnitude, density, and pressure ere flow-field variables for the current study

 Two studies considered sensitivity to

 Variation in geometry (NACA0006, NACA0012, NACA2412, NACA4412), and

 Variation in angle of attack (NACA0006 at α = −30 to 30)

 This presentation focuses on results for the angle of attack study with pressure

Table 3: Description of datasets

Study Training Dataset Testing Dataset

𝛼 Sensitivity NACA0006 𝛼 ∈ [−30°,−10°, 0°, 10°, 30°] NACA0006 𝛼 ∈ [−20°, 20°, 25°]

Geometry Sensitivity NACA0006 𝛼 ∈ [20°, 30°]
NACA0012 𝛼 ∈ [20°, 30°]
NACA4412 𝛼 ∈ [20°, 30°]

NACA0006 𝛼 = 25°
NACA0012 𝛼 = 25°
NACA4412 𝛼 = 25°
NACA2412 𝛼 ∈ [20°, 25°, 30°]
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Theory – CNN Modeling and Optimization

 Separate CNN autoencoder networks generated
for each study

 Questions about network shape in SciTech led to
the idea that the shape (and other hyperparameters) 
should be solved by an optimizer

 Used the Sequential Model-based Algorithm 
Configuration (SMAC) Python library[7] to optimize 
hyperparameters

 Random forest search determined optimal configuration 
from predefined search space

 Considered the broad search space in Table 4

Fig. 2: Representative CNN autoencoder model schematic

Distribution Statement A: Approved for Public Release, Distribution is Unlimited

Hyperparameter Type Search Space Default Value (SciTech 2022) Optimal (based on loss function)

Convolutional Filters Integer [10:100] 48 35

Activation Function Category sigmoid relu elu tanh selu sigmoid tanh

Filter/Pooling Kernel Size Category [2,4,8] 2 2

Number of Convolution Layers Integer [1:4] 3 2

Network Optimizer Category adam adadelta adagrad adamax nadam Adadelta adam

Loss Function Category mse mae mape msle msle msle

Latent Space Dimension Integer [5:50] 12 46

Table 4: Hyperparameter search space

7. F. Hutter, J. Lücke, and L. Schmidt-Thieme, “Beyond Manual Tuning of Hyperparameters,” KI - Kunstl. Intelligenz, vol. 29, no. 4, pp. 329–337, 2015.
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Model and Training History Comparison

Fig. 3: Training histories for SciTech 2022 and optimized models
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Fig. 4: SciTech 2022 Model Description Fig. 5: Optimized Model Description
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Compare SciTech 2022 and Optimized Models

 Model comparisons given for 
time-averaged pressure field 
for NACA0006 airfoil

 Optimized model does a 
better job predicting the 
DES pressure field for the 
test dataset but creates 
low-resolution predictions

 Revisiting optimizer run to 
improve prediction resolution

 Possibly set accuracy 
rather than loss function as 
an optimization objective

 Potentially add more layers 
into system

Distribution Statement A: Approved for Public Release, Distribution is Unlimited

Figure 6: Qualitative nondimensional pressure field predictions 
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Results/Discussion – Quantitative Errors

CNN model errors evaluated quantitatively based on 
mean square error 

Optimized model generally outperforms SciTech 2022 model 
across all angles of attack in testing and training sets

Figure 7: Mean square error comparison between training and testing datasets
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Conclusions/Path Forward

 CNN autoencoder model constructed to generate higher-accuracy flow 
field predictions based on lower-accuracy flow field inputs

 Pressure field predictions improved after hyperparameter optimization

 More work required to increase predicted field accuracy

 Next steps to continuously improve predictive capability

 Continue work with hyperparameter optimization

 Consider other network architectures, such as GAN and HRNet

 Consider alternative data preprocessing approaches and increased training

Distribution Statement A: Approved for Public Release, Distribution is Unlimited
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Glossary

AE autoencoder

CFD computational fluid dynamics 

CFL Courant–Friedrichs–Lewy

CNN convolutional neural networks

CPU central processing unit

DES detached-eddy-simulation 

FUN3D Fully Unstructured Navier-Stokes 3D 

GAN Generative Adversarial Network

GPU graphics processing unit

HRNet High-Resolution Network

hrs hours

ML machine learning

MSE mean square error

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

RANS Reynolds Average Navier-Stokes

SA Spalart-Allmaras Model

SMAC Sequential Model-based Algorithm Configuration  

URANS Unsteady Reynolds-Averaged Navier-Stokes
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