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† Sadly, Bernhard passed away on the 26th of January 2022, a few days after the completion of this work.
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Introduction
RANS Models
• No limitations on

• Reynolds number
• Geometric complexity

• Limitations on
• Accuracy (separation)
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è
Indispensable in
• Industrial application
• Aerodynamic design

è Requirements
• Improved accuracy
• Design: single model for various flow conditions

Data Driven Turbulence Modeling
Idea
• Real data
• Artificial intelligence (machine learning)
Method
• Optimisation of

• Model coefficients
• Functional dependence of coefficients
• Model form (additional terms)

è
• No limitation to canonical flows for learning
• Improved predictions in application

è Unlimited improvement?

From theory:
Fundamental conditions è Calibration
Turbulent equilibrium

potential
conflict
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Theory
Turbulent Equilibrium
• High Reynolds number
• Boundary layer assumptions
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è Simplification of
turbulence equations

0 = 𝑃!" + Π!" − 𝜀!"

0 = 𝑃($) − 𝜀

Reynolds stress equation

k-equation.

Turbulent equilibrium

Reynolds Stress Modeling
• Pressure strain correlation (off walls)

Π!" = 𝜀𝐴!" + 𝑘𝑀!"$&
𝜕𝑈$
𝜕𝑥&

slow rapid

• Dissipation (high Re)

𝜀!" =
2
3 𝜀𝛿!"

isotropic

𝐴!" , 𝑀!"$& = 𝑓(𝑏'()with

functions of
Reynolds stress anisotropies

2D Mean Flow
• Only one velocity gradient

𝜕𝑈$
𝜕𝑥&

è
𝜕𝑈
𝜕𝑦

è

è

• 3 algebraic equations for 7𝑏))
*(
, 7𝑏++

*(
, 7𝑏)+

*(
= 𝑓(𝐶!)

with 𝐶! = coeff. of pressure-strain model
• Independent of velocity profile

è valid for any 2D flow in turbulent equilibrium

cf. Abid & Speziale (1993)
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Reynolds Stress Model
Pressure Strain Correlation Models
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• Simplification 1

• SSG
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1
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Full model.

Reduce
non-linearity

Remove
dependence
on invariants

Drastic
surgery



Reynolds Stress Model
Calibration
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• Strategy
• Consider equilibrium state of original SSG model è invariants/eigenvalues of anisotropy tensor
• Rotate principal axes of anisotropy tensor to target |𝑏)+ *( è maintain invariants/eigenvalues

• Equilibrium states

b11|eq b22|eq b12|eq
Set 1 0.2099 −0.1355 −0.1506
Set 2 0.2007 −0.1266 −0.1603
Set 3 0.1907 −0.1165 −0.1700

Original SSG model
Reduced momentum transfer

Increased momentum transfer

è 12 different models (4 model forms x 3 sets of coefficients)
èEquilibrium values of 𝐼𝐼. , 𝐼𝐼𝐼. virtually identical

Length-scale equation
• BSL-w-equation (Menter, 1994)
• Length-scale correction (Eisfeld & Rumsey, 2020)



Overview
• Introduction
• Theory
• Reynolds Stress Modeling
• Simulation Results

• Fundamental Flows
• Applications

• Potential of Data Driven Methods
• Conclusion

> Turbulence Modeling: Roadblocks and the Potential for Machine Learning > Eisfeld  • Potential of Data Driven Reynolds Stress Modeling > 27-29 July 2022DLR.de  •  Chart 10



Simulation Results: Fundamental Flows
Channel Flow at ReH = 80e6 (1)
• Reynolds stress anisotropies
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• Wide range of constant bij|eq = target bij|eq è Equilibrium state confirmed
• Equilibrium state independent of model form è Theory confirmed

è Calibration strategy successful



Simulation Results: Fundamental Flows
Channel Flow at ReH = 80e6 (2)
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• Log-law • Von-Karman constant

• Determined by equilibrium state
• independent of model form

• 𝜅 = 𝑓( |𝑏)+ *()
cf. Abid & Speziale (1993)



Simulation Results: Fundamental Flows
Zero Pressure Gradient Boundary Layer (Flat Plate at Rec = 10e6)
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• Skin friction • Shear-stress anisotropy

• 𝑢1+ = |−𝑅)+ *( = −𝑘 |𝑏)+ *(
• 𝑐2 increases with |−𝑏)+ *(

• Target |𝑏)+ *( reached for 0.01 ≤ 𝑦/𝛿33 ≤ 0.2

è |𝑏)+ *( = −0.151 advantageous at high Re



Simulation Results: Fundamental Flows
Mixing Layer (Delville et al., 1989) (1)
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• Velocity profile at x = 950mm (most downstream measurement position)

• Lower velocity edge:
• |𝑏)+ *( = −0.170 optimum

è high momentum transfer

• Higher velocity edge:
• |𝑏)+ *( = −0.151 optimum

è low momentum transfer

• Central part (equilibrium state):
generally good agreement



Simulation Results: Fundamental Flows
Mixing Layer (Delville et al., 1989) (2)
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• Spreading • Shear-stress anisotropy at x = 950mm

• Equilibrium state defines spreading rate
• Larger variation due to model form
• |𝑏)+ *( = −0.170 optimum

• Target |𝑏)+ *( reached approximately only
è equilibrium state not yet reached
è Re too low?

è Equilibrium state incompatible with boundary layer



Overview
• Introduction
• Theory
• Reynolds Stress Modeling
• Simulation Results

• Fundamental Flows
• Applications

• Potential of Data Driven Methods
• Conclusion

> Turbulence Modeling: Roadblocks and the Potential for Machine Learning > Eisfeld  • Potential of Data Driven Reynolds Stress Modeling > 27-29 July 2022DLR.de  •  Chart 16



Simulation Results: Applications
Axisymmetric Transonic Bump (Bachalo & Johnson, 1986)
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• Pressure distribution • Skin friction in separation region

• Shock position = 𝑓( |𝑏)+ *()
• |𝑏)+ *( = −0.151 optimum (boundary layer)

• Minor variation by model form

Results determined by equilibrium state



Simulation Results: Applications
RAE 2822, Case 9 (M = 0.73, Re = 6.5e6)
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• Pressure distribution • Pressure distribution, detail

• All results similar • Shock location = 𝑓( |𝑏)+ *()
• |𝑏)+ *( = −0.170 optimum

(minor effect)

• Skin friction in separation region

• No separation

Results determined by equilibrium state



Simulation Results: Applications
RAE 2822, Case 10 (M = 0.75, Re = 6.2e6)
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• Pressure distribution • Skin friction

• Separation = 𝑓( |𝑏)+ *()

• Skin friction in separation region

• |𝑏)+ *( increases
è separation reduces

Results determined by equilibrium state

• Shock location = 𝑓( |𝑏)+ *()
• |𝑏)+ *( = −0.151 optimum

(major effect)



Simulation Results: Applications
Backward Facing Step (Driver & Seegmiller, 1985)
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• Pressure distribution • Skin friction

• |𝑏)+ *( = −0.170 optimum
è mixing layer

• Inflow/recovery:
|𝑏)+ *( = −0.151 optimum è BL

• Skin friction in separation region

• In bubble:
|𝑏)+ *( = −0.170 optimum è ML

• Reattachment = 𝑓( |𝑏)+ *()

Results determined by equilibrium state



Simulation Results: Applications
NASA Hump (Greenblatt et al., 2006)
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• Pressure distribution • Skin friction

• |𝑏)+ *( = −0.170 optimum
è mixing layer

• Inflow: |𝑏)+ *( = −0.151 opt. (BL) 
• Recovery: |𝑏)+ *( = −0.170 opt. (ML)

• Skin friction in separation region

• In bubble: |𝑏)+ *( = −0.170 opt. (ML) 
• Reattachment = 𝑓( |𝑏)+ *()

Results determined by equilibrium state
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Potential of Data Driven Methods
Turbulent Equilibrium
• Modeling

• Calibration condition
• Determines model predictions

• Shock location
• Separation/reattachment

• Independent of model form

• Physics
• Equilibrium state depends on flow
• Boundary layer ≠ mixing layer
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Data Driven Turbulence Modeling
• Modifications

• Model coefficients 
• Model terms

• Reference to application data
• Change of equilibrium state
è original calibration deteriorated

potential
conflict

è No universal solution

Potential of DD/ML Technology
• Protect fundamental conditions (Ph. Spalart!!!)

è classification of local flow type
• Implicit (selection of parameters/features)
• Explicit (supervised/unsupervised learning)

• DD/ML outside protected areas

è
• Maintains previous achievements
• Improvement beyond fundamental flows

(unhampered learning)
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Conclusion
Reynolds Stress Models
• Turbulent equilibrium è calibration condition for pressure-strain correlation
• Equilibrium state determines model predictions

Physics
• Equilibrium state depends on flow type

Potential of Data Driven Methods
• Identification of local flow type (classification) è protection of fundamental conditions
• Modification outside protected areas è improvement beyond fundamental flows
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Conclusion
Reynolds Stress Models
• Turbulent equilibrium è calibration condition for pressure-strain correlation
• Equilibrium state (and the corresponding Reynolds stress anisotropies) determines model predictions

Physics
• Equilibrium state depends on flow type  (boundary layer vs. mixing layer)

è Implication for modelling: Different sets of model coefficients for, e.g., boundary layers and mixing layers 

Potential of Data Driven Methods
• Identification of local flow type (classification) 
è Protection of fundamental conditions (e.g., regions of equilibrium state)
è Inside protected areas:

è distinguish different equilibrium states with different Rij-anisotropies (boundary layer vs. mixing layer)
è adaptation of the model coefficients to the local flow type

• Modification outside protected areas è improvement beyond fundamental flows using ML/DD

> Turbulence Modeling: Roadblocks and the Potential for Machine Learning > Eisfeld  • Potential of Data Driven Reynolds Stress Modeling > 27-29 July 2022DLR.de  •  Chart 26


