

Exceptional service in the national interest

Data-Driven Calibration of RANS Closure Models with PIV

Nathan E. Miller, Steven J. Beresh, Eric J. Parish, Jaideep Ray, and Matthew F. Barone

2022 Symposium on Turbulence Modeling July 27-29, 2022

RANS Performance

Jet-in-crossflow (JIC)

CVP, HSV, shear layer, etc.

S. Arunajatesan AIAA (2012): "[T]he predictive capabilities of the family of models examined here for the jet-in-crossflow problem are marginal at best."

- overpredicted velocity deficit
- overpredicted CVP strength, wrong location
- poor Reynolds stress predictions

Two causes:

- 1. Model-form error → Missing physics
 - 2. Inadequate coefficient calibration

Application: Supersonic jet in transonic crossflow

PIV data from Sandia experiments circa 2005.

Beresh et al. AIAA Journal, 43:2, 2005 Beresh et al. JPP, 23:2, 2007 etc.

Redefine RANS model coefficients via a data-driven calibration.

Two approaches:

- 1. Best scalar
- 2. Spatially-varying state-based

Approach #1: Calibrate Model Coefficients via PIV

Calibrate RANS based on PIV data

The jet interaction data set

Calibrated based on only four PIV planes:

Transverse jet of varying strength.

The full data set contains 48 test cases, varying:

- Jet strength
- Nozzle inclination
- Measurement station

Also, PIV test case on a full-scale vehicle with spin rockets.

RANS run using SIERRA Aero CFD Code

We examined 6 quality metrics on \overline{V} and $\overline{\omega}$ (Miller et al. 2022)

Here's one:

MSE = mean square error Overall picture of the error of the CFD w.r.t. the PIV.

We examined 6 quality metrics on \overline{V} and $\overline{\omega}$ (Miller et al. 2022)

Here's one: Here's another:

We examined 6 quality metrics on \overline{V} and $\overline{\omega}$ (Miller et al. 2022)

We examined 6 quality metrics on \overline{V} and $\overline{\omega}$ (Miller et al. 2022)

Approach #2: Spatially-variable C_{μ} based on PIV

A look inside a turbulence closure model

Turbulent eddy viscosity:

Linear Boussinesq:

$$\overline{u_i'u_j'} - \frac{2}{3}k\delta_{ij} = a_{ij} = -2\nu_t\overline{S_{ij}}$$

Ordinary Least Squares:

$$v_t = \frac{\overline{a_{ij}}\overline{S_{ij}}}{-2\overline{S_{kl}}}\overline{S_{kl}}$$

We can calculate all of these terms directly from PIV!

A simple computation based on the above equations will not suffice. The full story: see Miller and Beresh, *AIAA Journal*, 2021.

Move to a spatially-variable C_{μ} model

New approach:

 C_{μ} is allowed to vary spatially based on wind tunnel PIV data, rather than assuming a fixed constant.

We need C_{μ} over the entire computational domain.

The PIV provides C_{μ} in only two planes.

Machine learning of C_{μ} from the PIV data...

$$C_{\mu} = f(\widehat{S}_{ij}, \widehat{\Omega}_{ij})$$

Move to a spatially-variable C_{μ} model

New approach:

 C_{μ} is allowed to vary spatially based on wind tunnel PIV data, rather than assuming a fixed constant.

• Deep Learning of PIV-derived C_{μ} values

$$C_{\mu} = f(\lambda_{1-5})$$

$$\lambda_1 = \{ \hat{\mathbf{S}}^2 \}, \ \lambda_2 = \{ \hat{\mathbf{\Omega}}^2 \},$$

$$\lambda_3 = \{ \hat{\mathbf{S}}^3 \}, \ \lambda_4 = \{ \hat{\mathbf{S}} \, \hat{\mathbf{\Omega}}^2 \}, \ \lambda_5 = \{ \hat{\mathbf{S}}^2 \hat{\mathbf{\Omega}}^2 \}$$

- Deep Neural Network (DNN)
 - Multiple (3) hidden layers
 - 18, 9, 3 nodes per layer
 - ReLU activation function
 - Ensembles of networks

Implementation

Sandia Parallel Aero Reentry Code (SPARC)

- Nominal, Calibrated, & Variable C_{μ} models
 - Variable c_{μ} model queries ensemble of networks trained on 2 planes of PIV data

How well does this work?

How well does this work?

Significant improvement over nominal But we already knew that....

Slight improvement over Calibrated?

What's going on?

Default C_{μ} to 0.1025 Avoid extrapolation or variance

Result: Default C_{μ} dominates the result

What is C_u in unmeasured regions?

The PIV data miss important physics near the wall and the jet nozzle

Another issue is data consistency

 C_{μ} model trained using measured k and ϵ , but RANS k and ϵ values may be in error

Conclusions & what's next?

Data-driven CFD trained with PIV-measured physics rather than trained with LES/DNS

Model as implemented may be an improvement over best Calibrated model

Default Calibrated value dominates: More data needed?

Formalized validation with same 6 metrics ongoing: Stay tuned

Improve PIV data consistency
Use same data in TBNN: Eric Parish

Citations

- Arunajatesan, S., "Evaluation of Two-Equation RANS Models for Simulation of Jet-in-Crossflow Problems," AIAA Paper 2012-1199, January 2012
- Beresh, S. J., Henfling, J. F., Erven, R. J., & Spillers, R. W., "Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow," AIAA Journal, Vol. 43, No. 2, 2005, pp. 379–389
- Beresh, S. J., Henfling, J. F., Erven, R. J., & Spillers, R. W., "Vortex Structure Produced by a Laterally Inclined Supersonic Jet in Transonic Crossflow," J. of Prop. and Power, Vol. 23, No. 2, 2007, pp. 353–363
- Beresh, S. J., Heineck, J. T., Walker, S. M., Schairer, E. T., & Yaste, D. M., "Planar Velocimetry of Jet/Fin Interaction on a Full-Scale Flight Vehicle Configuration," AIAA Journal, Vol. 45, No. 8, 2007, pp. 1827– 1840
- Ray, J., Lafantzi, S., Arunajatesan, S., & Dechant, L., "Bayesian Parameter Estimation of a k-ε Model for Accurate Jet-in-Crossflow Simulations," AIAA Journal, Vol. 54, No. 8, 2016, pp. 2432–2448.
- Ray, J., Dechant, L., Lefantzi, S., Ling, J., & Arunajatesan, S., "Robust Bayesian Calibration of a k-ε Model for Compressible Jet-in-Crossflow Simulations," AIAA Journal, Vol. 56, No. 12, 2018, pp. 4893–4909.
- Miller, N. E., & Beresh, S. J., "Using Particle Image Velocimetry to Determine Turbulence Model Parameters," AIAA Journal, Vol. 59, No. 3, 2021, pp. 842–854
- Miller, N. E., Beresh, S. J., & Ray, J., "Validation of calibrated *k*-*ϵ* model parameters for jet-in-crossflow," AIAA Journal, https://doi.org/10.2514/1.J061396

Backup Slides

Metrics

- Quality metrics, predicted (X_{RANS}) vs true (X_{PIV}) :
- Mean Squared Error (normalized): 0.0 = perfect
 - Measures peak accuracy

$$MSE = \frac{\langle (X_{PIV} - X_{RANS})^2 \rangle}{\langle X_{PIV}^2 \rangle}$$

- Geometric Mean Error (normalized): 0.0 = perfect
 - Measures bulk accuracy

$$GME = \frac{\exp[(\langle \ln(|X_{PIV} - X_{RANS}|)\rangle)}{\exp[(\langle \ln(|X_{PIV}|)\rangle)}$$

- 2-D Correlation Coefficient: 1.0 = perfect
 - Measures spatial alignment

$$corr = \frac{\sum_{i} \sum_{j} (X_{PIV} - \langle X_{PIV} \rangle) (X_{RANS} - \langle X_{RANS} \rangle)}{\sqrt{\sum_{i} \sum_{j} (X_{PIV} - \langle X_{PIV} \rangle)^{2} \sum_{i} \sum_{j} (X_{RANS} - \langle X_{RANS} \rangle)^{2}}}$$

- Vortex Perimeters (normalized): 1.0 = perfect
 - Measures vortex size

$$P^* = \frac{P_{RANS}}{P_{PIV}}$$

- Vortex Circulation (normalized): 1.0 = perfect
 - Measures vortex strength

$$\Gamma^* = \frac{\Gamma_{RANS}}{\Gamma_{PIV}}, \qquad \Gamma = \int \overline{\omega} \, dA$$

Vortex center difference:

- 0.0 = perfect
- Measures vortex alignment

$$E^* = \frac{\sqrt{(\overline{y_{PIV}} + \overline{y_{RANS}})^2 + (\overline{z_{PIV}} + \overline{z_{RANS}})^2}}{P_{PIV}}, \quad [\overline{y}, \overline{z}] = \int [y, z] \,\overline{\omega} \,dA$$