

Lessons from Data-driven Reynolds Stress and Turbulent Scalar Flux Closures

Roles of anisotropy, auxiliary equations, and model extrapolation

Andrew J. Banko

Assistant Professor
United States Military Academy

July 27-29, 2022

Research Objectives

Understanding heat and mass transfer in complex, 3D flows ...

Experiments 3D mean flow measurements using magnetic resonance imaging

$\frac{\text{diffusivity basis}}{\pi^{(1)}, \pi^{(2)}, ..., \pi^{(6)}}$ $\frac{v_t \nabla c}{\mathbf{D}^*} \times -\mathbf{u}' c'$ input invariants $\lambda_1, ..., \lambda_8$ $\mathbf{basis coefficients}$ $g^{(1)}, g^{(2)}, ..., g^{(6)}$

Key Questions

- Relative importance of anisotropy and auxiliary equations
- Performance bounds of model forms
- Data requirements and dealing with extrapolation

Gas Turbine Film Cooling

Blade surfaces are actively cooled using arrays of round and shaped holes

LES Database

Family of jet in crossflows

777 Diffuser Hole

Conditions

- Grid: 40M cells, wall-resolved on bottom/hole
- SGS Model: Vreman, $v_{SGS}/v < 1$
- Main flow: $Re_H = 25,000$ $Re_{\theta} = 2,500$

$$\delta_{99}/D = 1.5$$

- Jet: BR = 1 (based on metering hole) $Re_D = 2,900$

Validation against 3D MRI data

Flow Field Overview

- Round hole has a strong counter-rotating vortex pair
- Diffuser hole bleeds low momentum fluid adjacent to the surface

Baseline RANS

• Focus on scalar transport equation with $k - \epsilon$ as a baseline

$$\boldsymbol{U} \cdot \nabla C = \alpha \nabla^2 C - \nabla \cdot \langle c' \boldsymbol{u}' \rangle$$
 where $\langle c' \boldsymbol{u}' \rangle = -\frac{v_T}{P r_t} \nabla C$ and $P r_t \approx 0.85$

- Isolate turbulent scalar flux model
 - Same grid as LES
 - Use LES mean velocity
 - Determine k and ϵ by solving their transport equations using the LES velocity field

ML Turbulent Scalar Flux Modeling

• Turbulent scalar flux: $\langle c' u' \rangle = -\nu_T \mathbf{D}^* \nabla C$ $\mathbf{D}^* = \mathbf{F}(\mathbf{S}, \mathbf{R})$ \mathbf{S}, \mathbf{R} normalized by k/ϵ

¹Milani et al., JFM, 2021

²Banko et al., In prep.

ML Turbulent Scalar Flux Modeling

- Turbulent scalar flux: $\langle c' u' \rangle = -\nu_T D^* \nabla C$ $D^* = f(S, R)$ S, R normalized by k/ϵ
- Tensor basis neural network (TBNN-s)^{1,2}
 - Input invariants

$$\lambda_1 = tr(\mathbf{S}^2) \quad \lambda_3 = tr(\mathbf{S}^3) \quad \lambda_5 = tr(\mathbf{S}^2 \mathbf{R}^2) \quad \lambda_7 = \sqrt{k} d/\nu$$

$$\lambda_2 = tr(\mathbf{R}^2) \quad \lambda_4 = tr(\mathbf{S}\mathbf{R}^2) \quad \lambda_6 = tr(\mathbf{S}^2 \mathbf{R}^2 \mathbf{S}\mathbf{R}) \quad \lambda_8 = \nu_T/\nu$$

Tensor basis (derived from vector basis³)

$$T^{(1)} = I$$
 $T^{(3)} = R$ $T^{(5)} = R^2$
 $T^{(2)} = S$ $T^{(4)} = S^2$ $T^{(6)} = SR + RS$

²Banko et al., In prep.

ML Turbulent Scalar Flux Modeling

- Turbulent scalar flux: $\langle c' u' \rangle = -\nu_T \mathbf{D}^* \nabla C$ $\mathbf{D}^* = f(S, \mathbf{R})$ S, \mathbf{R} normalized by k/ϵ
- Tensor basis neural network (TBNN-s)^{1,2}
 - Input invariants

$$\lambda_1 = tr(\mathbf{S}^2) \quad \lambda_3 = tr(\mathbf{S}^3) \quad \lambda_5 = tr(\mathbf{S}^2 \mathbf{R}^2) \quad \lambda_7 = \sqrt{k} d/\nu$$

$$\lambda_2 = tr(\mathbf{R}^2) \quad \lambda_4 = tr(\mathbf{S}\mathbf{R}^2) \quad \lambda_6 = tr(\mathbf{S}^2 \mathbf{R}^2 \mathbf{S}\mathbf{R}) \quad \lambda_8 = \nu_T/\nu$$

Tensor basis (derived from vector basis³)

$$T^{(1)} = I$$
 $T^{(3)} = R$ $T^{(5)} = R^2$
 $T^{(2)} = S$ $T^{(4)} = S^2$ $T^{(6)} = SR + RS$

- 8 layers, 20 nodes/layer
- Loss function

$$L = log\left(\frac{\|\langle \boldsymbol{u}'c'\rangle_{ML} - \langle \boldsymbol{u}'c'\rangle_{LES}\|}{\|\langle \boldsymbol{u}'c'\rangle_{LES}\|}\right)$$

diffusivity basis **T**⁽¹⁾, **T**⁽²⁾, ..., **T**⁽⁶⁾

¹Milani et al., JFM, 2021 ²Banko et al., In prep. ³Zheng, 1994

Round Hole Results

Round Hole Results

Diffuser Hole Results

Diffuser Hole Results

Extrapolation Detection

Gaussian mixture model

Extrapolation Detection

1.0

0.5

0.0

Gaussian mixture model

Extrapolatory points: Blue = interpolating Red = extrapolating

Round Hole (Train on Diffuser)

Diffuser (Train on Round)

Breakdown by Gaussian

Flow Dimensionality

Detecting statistically 2D vs. 3D flow

$$\lambda_5 = tr(S^2 R^2) = \frac{1}{4} \omega^2 \sum_{i=1}^3 \cos^2 \theta_i \, s_i = \begin{cases} \neq 0 & \text{if 3D} \\ = 0 & \text{if 2D} \end{cases}$$

"2D"-Trained Network Extrapolates in "3D"

Conclusions

- GMM efficiently characterizes interpolation and extrapolation points
- Predictions were improved <u>on average</u> for interpolation cases
 Caution: High error for interpolating points is possible
- Extrapolation and error were significant when moving from quasi-2D flow to 3D flow 3D: 5 independent invariants → 2D: 1 indp. inv. → 1D: 1 indp. inv.
- Big picture: an irony of data limitation

40 million CVs

≠
40 millions useful training points

Acknowledgments

Collaborators

Jad Nasrallah (Mainspring Energy)

Pedro Milani (Google X)

David Ching (Sandia National Labs)

Funding

National Science Foundation

Office of Naval Research