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Research Objectives

Understanding heat and mass transfer in complex, 3D flows …

Experiments 3D mean flow measurements using magnetic resonance imaging

Modeling

𝜆!, … , 𝜆"

Key Questions
- Relative importance of anisotropy and

auxiliary equations
- Performance bounds of model forms
- Data requirements and dealing with 

extrapolation



Gas Turbine Film Cooling

Blade surfaces are actively cooled using arrays of round and shaped holes



• Family of jet in crossflows

• Conditions
– Grid: 40M cells, wall-resolved on bottom/hole
– SGS Model: Vreman, 𝜈$%$/𝜈 < 1
– Main flow: 𝑅𝑒& = 25,000     

𝑅𝑒' = 2,500    
𝛿((/𝐷 = 1.5

– Jet: BR = 1 (based on metering hole)        
𝑅𝑒) = 2,900

LES Database

Domain 777 Diffuser Hole

• Validation against 3D MRI data



Flow Field Overview

• Round hole has a strong counter-rotating vortex pair
• Diffuser hole bleeds low momentum fluid adjacent to the surface

Round Hole Diffuser Hole
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Baseline RANS

• Focus on scalar transport equation with 𝑘 − 𝜖 as a baseline

• Isolate turbulent scalar flux model
– Same grid as LES
– Use LES mean velocity
– Determine 𝑘 and 𝜖 by solving their transport equations using the LES velocity field

𝑼 ⋅ ∇𝐶 = 𝛼∇!𝐶 − ∇ ⋅ 𝑐"𝒖" 𝑐"𝒖" = −
𝜈#
𝑃𝑟$

∇𝐶where and 𝑃𝑟$ ≈ 0.85

LES

Baseline RANS
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ML Turbulent Scalar Flux 
Modeling

• Turbulent scalar flux: 𝑐"𝒖" = −𝜈#𝑫∗∇𝐶

1Milani et al., JFM, 2021
2Banko et al., In prep.
3Zheng, 1994

𝑺, 𝑹 normalized by 𝑘/𝜖𝑫∗ = 𝑭(𝑺, 𝑹)



ML Turbulent Scalar Flux 
Modeling

• Turbulent scalar flux:
• Tensor basis neural network (TBNN-s)1,2

– Input invariants

– Tensor basis (derived from vector basis3)

𝑐"𝒖" = −𝜈#𝑫∗∇𝐶

1Milani et al., JFM, 2021
2Banko et al., In prep.
3Zheng, 1994

𝜆* = 𝑡𝑟 𝑺+

𝜆+ = 𝑡𝑟 𝑹+
𝜆, = 𝑡𝑟 𝑺,

𝜆- = 𝑡𝑟 𝑺𝑹+
𝜆. = 𝑡𝑟 𝑺𝟐𝑹+

𝜆0 = 𝑡𝑟 𝑺+𝑹+𝑺𝑹

𝜆1 = 𝑘𝑑/𝜈
𝜆2 = 𝜈3/𝜈

𝑻(') = 𝑰
𝑻(!) = 𝑺

𝑻()) = 𝑹
𝑻(*) = 𝑺!

𝑻(+) = 𝑹!

𝑻(,) = 𝑺𝑹 + 𝑹𝑺

𝑺, 𝑹 normalized by 𝑘/𝜖𝑫∗ = 𝒇(𝑺, 𝑹)



ML Turbulent Scalar Flux 
Modeling

• Turbulent scalar flux:
• Tensor basis neural network (TBNN-s)1,2

– Input invariants

– Tensor basis (derived from vector basis3)

– 8 layers, 20 nodes/layer
– Loss function

𝑐"𝒖" = −𝜈#𝑫∗∇𝐶

𝜆! , … , 𝜆"

1Milani et al., JFM, 2021
2Banko et al., In prep.
3Zheng, 1994

𝜆* = 𝑡𝑟 𝑺+

𝜆+ = 𝑡𝑟 𝑹+
𝜆, = 𝑡𝑟 𝑺,

𝜆- = 𝑡𝑟 𝑺𝑹+
𝜆. = 𝑡𝑟 𝑺𝟐𝑹+

𝜆0 = 𝑡𝑟 𝑺+𝑹+𝑺𝑹

𝜆1 = 𝑘𝑑/𝜈
𝜆2 = 𝜈3/𝜈

𝐿 = 𝑙𝑜𝑔
𝒖"𝑐′ 01 − 𝒖"𝑐′ 123

𝒖"𝑐′ 123

𝑻(') = 𝑰
𝑻(!) = 𝑺

𝑻()) = 𝑹
𝑻(*) = 𝑺!

𝑻(+) = 𝑹!

𝑻(,) = 𝑺𝑹 + 𝑹𝑺

𝑺, 𝑹 normalized by 𝑘/𝜖𝑫∗ = 𝒇(𝑺, 𝑹)



Round Hole Results

LES

Trained on 
Round Hole
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Round Hole Results
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Diffuser Hole Results

LES

Trained on 
Diffuser Hole

Trained on 
Round Hole

Baseline RANS

𝐶

𝐶

𝐶

𝐶



Diffuser Hole Results
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Extrapolation Detection

• Gaussian mixture model

𝜆'

𝜆!
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Extrapolation Detection

• Gaussian mixture model

• Extrapolatory points: Blue = interpolating Red = extrapolating

𝑦/𝐷

𝑦/𝐷

𝑥/𝐷

Round Hole 
(Train on Diffuser)

Diffuser
(Train on Round)
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Breakdown by Gaussian

Blue = interpolating Red = extrapolating



Flow Dimensionality

• Detecting statistically 2D vs. 3D flow

𝜆+ = 𝑡𝑟 𝑺!𝑹! =
1
4𝜔

!K
45'

)

cos! 𝜃4 𝑠4 = Q≠ 0 if 3D
= 0 if 2D

𝜃'
𝒗𝟏

𝒗𝟐 𝝎𝟏

𝑺 = 𝑽
𝒔𝟏

𝒔𝟐
𝒔𝟑

𝑽𝑻

3D 
Diagnostic

Round Hole 
(Train on Diffuser)

Diffuser
(Train on Round)



“2D”-Trained Network 
Extrapolates in “3D”

GMM 1

GMM 8

GMM 18
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Conclusions

• GMM efficiently characterizes interpolation and extrapolation points

• Predictions were improved on average for interpolation cases
Caution: High error for interpolating points is possible

• Extrapolation and error were significant when moving from quasi-2D flow to 3D flow
3D: 5 independent invariants → 2D: 1 indp. inv. → 1D: 1 indp. inv.

• Big picture: an irony of data limitation

40 million CVs 
≠

40 millions useful training 
points
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