

Turbulence Modeling: Roadblocks, and the Potential for Machine Learning NASA, July 2022

Conjectures of a Generalized Law of the Wall and a Structural Limitation for Classical Turbulence Models

Philippe Spalart Retired, NASA/Boeing

Helpful comments from Strelets, Rumsey, and Batten

Outline

- We define the class of "Classical RANS Turbulence Models"
 - Example: k-ε
- We formulate a conjecture we call Generalized Law of the Wall about any quantity *Q* in predictions of the constant-stress layer:

$$Q = f(y^+) C u_\tau^{\alpha} y^{\beta}, \qquad \lim_{y^+ \to \infty} f(y^+) = 1$$

- It is not really new, but is more specific here, and extends to the wall
- We don't have a mathematical proof, but we have new arguments
- Analytical and numerical results support it
- If true, it prevents **any** Classical Model from fully emulating Reality, even for the Reynolds stresses in channel flow
 - The implications for our paradigm in Machine Learning are evident

The Results of Turbulence Models Such as Reynolds stresses Reality LEVM Κ-ε **RSM** Κ-ω SA92 **EARSM**

The Results of Turbulence Models Such as Reynolds stresses

Classical Turbulence Models

- Transport models consist in (1) Constitutive Relations, (2) Budgets, and (3) Viscous Functions
- (1) The Constitutive Relation (if an eddy viscosity) is a combination of the turbulence quantities, Q_i , and the velocity-gradient tensor
- (2) The Evolution Equation, or Budget, for each quantity Q_i , includes:
 - A Production Term proportional to the velocity-gradient tensor
 - Internal Source terms
 - Internal Diffusion terms
 - Possibly terms involving the wall distance
- The first three imitate the exact Reynolds-Stress transport equation
 - Although the models have much empirical content
 - Wall distance is an arbitrary addition
 - Of course, the "sacred" RS equation is not closed
- I believe the GLW is an unintended consequence of this "imitation"
 - Together with the strong demand from CFD for locality
- (3) The viscous functions are active only up to the beginning of the log layer
 - After that, f(.) = 1

The Constant-Stress Layer

- The qualitative reasoning is general, but the math is written in a constant-stress wall-bounded layer
 - The total shear stress is $\tau = u_{\tau}^2$, setting $\rho = 1$
- The velocity Law of the Wall is accepted:

$$U = u_\tau \ U^+(y^+)$$

• As is the logarithmic law:

$$U^{+} = \frac{1}{\kappa} \log(y^{+}) + C, \qquad y^{+} \to \infty$$

- y is much smaller than the thickness of the flow: $y \ll h$
- h^+ is very large, and results "improve" as it increases

The Velocity and the Generalized Laws of the Wall

• The shear rate satisfies $\frac{dU}{dv} = \left(y^{+} \frac{dU^{+}}{dv^{+}}\right) \frac{u_{\tau}}{\kappa v}$

and $\frac{y^+dU^+}{dy^+}$ is a function of y^+ only; we call it $f_{dU/dy}(y^+)$ $\lim_{y^+\to\infty} f_{dU/dy} = 1$

• The GLW *conjecture* states that similarly for any quantity Q in the model,

$$Q = f_Q(y^+) C_Q u_\tau^{\alpha_Q} y^{\beta_Q}, \qquad \lim_{y^+ \to \infty} f_Q(y^+) = 1$$

- Here, α_Q and β_Q are dictated by dimensional analysis
- For instance, $C_{dU/dy} = 1/\kappa$, $\alpha_{dU/dy} = 1$, $\beta_{dU/dy} = -1$
- The central question is whether model results satisfy the GLW, and whether Reality (in experiment and DNS) satisfies the GLW

The Velocity and the Generalized Laws of the Wall

• The shear rate satisfies $\frac{dU}{dv} = \left(y^{+} \frac{dU^{+}}{dv^{+}}\right) \frac{u_{\tau}}{v}$

and $\frac{y^+dU^+}{dy^+}$ is a function of y^+ only; we call it $f_{dU/dy}(y^+)$ $\lim_{y^+\to\infty} f_{dU/dy} = 1$

• The GLW *conjecture* states that similarly for any quantity Q in the model,

$$Q = f_Q(y^+) C_Q u_{\tau}^{\alpha_Q} y^{\beta_Q}, \qquad \lim_{y^+ \to \infty} f_Q(y^+) = 1$$

- Here, α_Q and β_Q are dictated by dimensional analysis
- For instance, $C_{dU/dy} = 1/\kappa$, $\alpha_{dU/dy} = 1$, $\beta_{dU/dy} = -1$
- The central question is whether model results satisfy the GLW, and whether Reality (in experiment and DNS) satisfies the GLW

Arguments in Favor of the GLW in Model Results

- We examine the budgets. They contain:
 - Algebraic combinations of the Q's such as $k\omega$ and $Re_t \equiv \frac{k^2}{C'}$ and $a_{ij} \equiv \frac{R_{ij}}{k} \frac{2}{2}\delta_{ij}$
 - Derivatives such as $d\omega/dy$
 - Non-dimensional functions such as $f_1(Re_t)$
- All of these terms satisfy the GLW, provided the Q quantities do:

 - The algebraic combinations inherit the dimensions and the $f_Q(y^+)$ dependencies $\frac{dQ}{dy} = (y^+ f_Q' + \beta_Q f_Q) C_Q u_\tau^{\alpha_Q} y^{\beta_Q 1}$, and therefore obeys the GLW
 - Re_t and χ don't satisfy the GLW, because $\lim_{v^+ \to \infty} Re_t = \infty$, but the functions $f_1(Re_t)$ and $f_{\nu 1}(\chi)$ do
- As a result, the entire budget DQ/Dt obeys the GLW
 - In the log layer, where all the f's equal 1, it contains the C_0 's and the model
 - We have N+1 equations for N+1 unknowns, namely κ and the C_O 's
 - We find κ and the C_O 's such that $C_B = 0$, and then f_B does not matter
 - The f_Q functions depend on the viscous functions of the model, such as f_{v1} or f_1 , and the actual viscous terms

Example: the Chien k- ε Model

- We work in the inviscid region, where all the f functions equal 1
- Capital C's will be as in the GLW, while lower-case c's are the constants of the model, e.g. c_{μ}
- We assume that

$$\frac{dU}{dy} = u_{\tau}/\kappa y$$

• There are three unknowns, namely
$$\kappa$$
, C_k , and C_{ε} , and three equations:
$$\tau - \tau_{wall} = u_{\tau}^2 \left(\frac{c_{\mu} C_k^2}{\kappa C_{\epsilon}} - 1 \right) = 0,$$

$$\frac{Dk}{Dt} = \frac{u_{\tau}^3}{y} \left(\frac{1}{\kappa} - C_{\epsilon} \right) = 0,$$

$$\frac{D\epsilon}{Dt} = \frac{u_{\tau}^4}{y^2} \left(\frac{c_{\epsilon 1}}{\kappa} \frac{C_{\epsilon}}{C_k} - c_{\epsilon 2} \frac{C_{\epsilon}^2}{C_k} + \frac{2\kappa}{\sigma_{\epsilon}} \right) = 0$$

- These equations accept a solution in which C_k and C_{ϵ} are constants,
 - and independent of the flow type (channel, boundary layer) and Reynolds number
 - This is not a proof that this solution is unique, for other models
- The first two combined give $c_{\mu}C_{k}^{2}=1$, which is the well-known $k^{+}=1/\sqrt{c_{\mu}}$, and $C_{dU/dy} = C_{\epsilon} = 1/\kappa$, i.e., the accepted behavior
- The third equation sets $\kappa = 0.444!$

Chien $k - \epsilon$ Model in Channel Flow

- Hint of constant behavior in log layer
- No dependence on Re_{τ} (" $f(y^{+})$ ")
- DNS results for k invalidate the GLW₊ 0.6
- $Re_{\tau} = 10^4$ is insufficient

Reynolds Stresses in Boundary-Layer DNS, 1988

- I discussed this with Prof. Launder...
- The results contradict both GLW implications for the stresses:
 - constant behavior in the log layer, due to $\alpha = 2$, $\beta = 0$
 - lack of dependence on the flow Reynolds number (" $f(y^+)$ ")
- Recall peak values, $\overline{u'^2}^+ \approx 7.3$, $k^+ \approx 5.2$

SSG-LRR Reynolds-Stress Model

- Courtesy: B. Eisfeld and C. Rumsey
- This model is closest to first principles, but is Classical! $\overline{u_i'u_i'} = f_{ij}(y^+) C_{ij} u_\tau^2 y^0$

Modified Craft-Launder Reynolds-Stress Model

- Courtesy: P. Batten with CFD++
- Channel flow
- Also exhibits GLW
- Peak $\overline{u'^2}^+ \approx 4.8$

• Also exhibit GLW

QCR Models

- $\overline{u_i'u_j'} = g_{ij} \overline{u'v'}$
- Anisotropy is fixed
- Models did improve!
- Still missing the near-wall peak, $\overline{u'^2}^+ \approx 6!$

Does this all Matter?

- Turbulent CFD has lived with this "problem" since the 1970's
 - Its principal arena of success is the boundary layer, and u'v' dominates this flow
 - The stresses that fail the GLW enter $\partial/\partial x$ and $\partial/\partial z$, which are $\ll \partial/\partial y$
 - The SA92 model is not even realizable!
- Recent modeling work has brought out the other stresses, for corner flows
 - QCR and similar nonlinear (but Classical) eddy-viscosity models help
 - They still predict the GLW and miss the inner peaks, see QCR2020
- Machine Learning is taking place within at least two styles:
 - Using detailed quantities from DNS, e.g. HiFi-TURB
 - This is more "scientific," and more vulnerable to the Limitation
 - Using only outputs such as lift and pressure
 - This is immune to the Structural Limitation, but it could be superficial
- If training a Classical Model to the Reynolds stresses in channel DNS, Machine Learning will attempt to break through the Limitation by using the viscous functions outside the viscous region
- Could the GLW apply at "enormous" Reynolds numbers?
- Theories of "inactive motion" and the Attached-Eddy Hypothesis explain both failures of the GLW, but they do not connect with Classical Models
- Are there "non-classical" but CFD-friendly models waiting to be created?