Hybrid closure modeling with laminar to turbulent transition

Paul Durbin Aerospace Engineering Iowa State University

2:30-2:45, 29 July

Yin, Ge, Durbin $\mathit{JFM}\ 915\ (2021)$

Can a hybrid—RANS/LES—model, for turbulence simulation, plausibly capture laminar-to-turbulent transition?

If yes, how?

Length scale interpolation

(non-zonal) Hybrid model interpolates between RANS and LES formulas Motive: eddy-resolving simulation for engineering—very coarse (RANS) to fine grids Simplest is DES (Spalart, 2009): only ℓ is interpolated

$$\ell_{RANS} = \sqrt{k/\omega}$$
 $\ell_{LES} = C_{DES} \Delta; \ \Delta \equiv V^{1/3}$

c.f., $\min(\ell_{RANS}, \ell_{LES})$

$$\ell = (1 - f_d)\ell_{RANS} + f_d \min(\ell_{RANS}, \ell_{LES})$$

$$f_d \to 0, y \to 0;$$
 $f_d = 1$ is the eddy simulation region

The *shielding function* is from the RANS literature

$$f_d = 1 - \tanh(8r_d)^3; \quad r_d = \frac{k/\omega + \nu}{\kappa^2 d_w^2 \sqrt{|S|^2 + |\Omega|^2}}$$

ℓ^2 - ω Formulation

Reddy, Ryon, Durbin Int. J. Heat Fluid Flow (2014) Yin, Reddy, Durbin Phys. Fl. (2015)

$$\nu_t = \ell^2 \omega$$

 ω -equation is unchanged; viewed as diffusively filtered S:

$$\frac{D\omega}{Dt} - \nabla \cdot (\nu + \sigma_{\omega} k/\omega) \nabla \omega + C_{\omega 2} \omega^2 = 2C_{\omega 1} |S|^2$$

Only change to k-equation is production

$$\frac{Dk}{Dt} - = 2 \left[\ell^2 \omega \right] |S|^2 - C_{\mu} k \omega + \nabla \cdot \left[\left(\nu + \sigma_k \frac{k}{\omega} \right) \nabla k \right]$$

Recall
$$\ell_{LES} = C_{DES} \Delta$$

4

Adapt C_{DES} to turbulence intensity

Computable test filter stress, as in LES

$$L_{ij} = -\widehat{u}_i \widehat{u}_j + \widehat{u}_i \widehat{u}_j$$

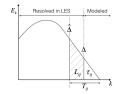
$$M_{ij} = \hat{\Delta}^2 \hat{\omega} \widehat{S}_{ij} - \hat{\Delta}^2 \widehat{\omega} \widehat{S}_{ij} \qquad \hat{\Delta}/\Delta = 2$$

 $\widehat{\bullet}$ is test filter; \overline{u} is the resolved velocity field

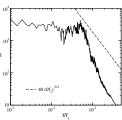
Germano identity is replaced by least squares, which can be wrong – hence lower bound:

$$C_{dyn}^2 = \max(L_{ij}M_{ij}/2M_{ij}^2, 0)$$

 $C_{DES} = C_{dyn}$ is OK on fine enough grid – but it's awful on fairly coarse grids (hybrid simulation type)



6/17


Adapt C_{DES} to grid resolution

There is not enough small scale energy to provide test filter stress

Ideally:

Coarse grid:

Make lower bound depend on resolution of eddies:

$$\xi \equiv rac{h_{max}}{\eta} \quad ext{with } \eta = \left(rac{
u^3}{\epsilon}
ight)^{1/4} \quad ext{where } \epsilon = C_\mu k \omega$$

$$\textit{C}_{\textit{lim}}(\xi) = 0.06(\textit{max}(\textit{min}(\xi-23)/7,1),0) + \textit{max}(\textit{min}(\xi-65)/25,1),0))$$

$$C_{DES} = \max(C_{dyn}, C_{lim})$$

adaptive model \rightarrow transition sensor

A simpler formula

Bader, Yin, Durbin; Flow Turbulence and Combustion $2022\,$

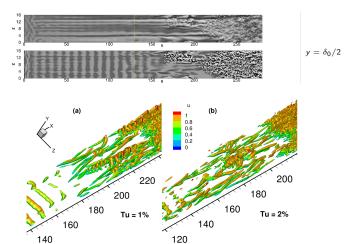
To enable transition, without dynamic method, From the ω -equation in equilibrium, with the standard C_{ω_1} , C_{ω_2}

$$\nu_{T} = \left(C_{DES}\Delta\right)^{2} \frac{20}{3\sqrt{3}} \sqrt{|S|^{2}} \tag{1}$$

Vreman's model

$$\nu_T = 2.5(C_S \Delta)^2 \Pi \tag{2}$$

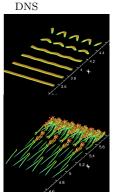
where

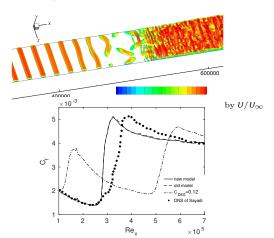

$$\alpha_{ij} = \frac{\partial \overline{u}_j}{\partial x_i}, \quad \beta_{ij} = \alpha_{mi}\alpha_{mj}, \qquad \Pi = \sqrt{\frac{B_\beta}{\alpha_{ij}\alpha_{ij}}}$$

 B_{β} is the second invariant of β_{ij} . In parallel shear flow, $B_{\beta} = 0$.

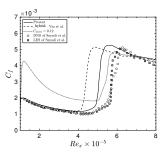
Equating (1) and (2)
$$C_{DES} = 0.16 \sqrt{\frac{\Pi}{|S|}}$$
 also works for transition.

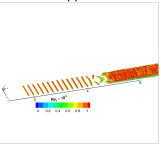
DNS for comparison


$$\begin{split} N_{grid} \sim 100 \times 10^6 \\ \text{Instability waves with f.s.t.} & --\text{mixed transition} \end{split}$$

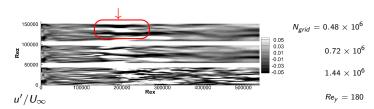

FullScreen PrevPage No

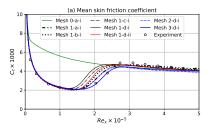
Hybrid Transition: Orderly

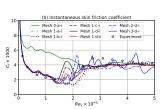

H, K-type TS transition



Hybrid simulation


H-type transition using Vreman-based approach





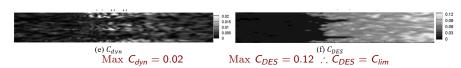
Iso-surfaces of Q criterion colored by instantaneous U/U_{∞}

Hybrid Transition: Bypass

Closer Look

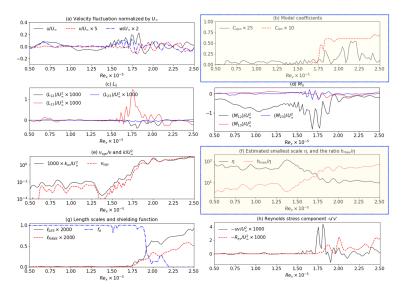
Yin, Ge, Durbin JFM 915, (2021)


Closer look at bypass transition

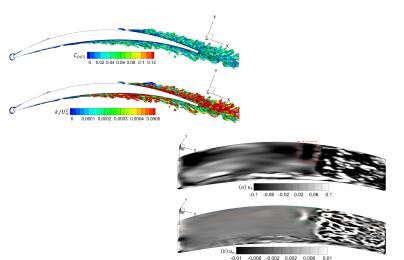


Transition sensor

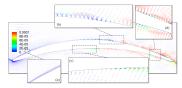
Is the model activated by L_{ii} ? No



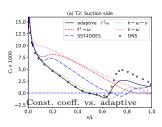
Recall
$$C_{DES} = \max(C_{dyn}, C_{lim})$$

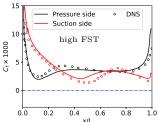

What is the sensor?

14


Bypass on turbine blade

Yin & Durbin J. Turbomach. 144(2022)




FullScreen PrevPage

Bypass on turbine blade

Instantaneous perturbation velocity (x, y)components), colored by instantaneous modeled kinetic energy k/U_{∞}^2 .

In short

The nature of hybrid transition is:

Precursors to transition are simulated; but, literal breakdown is replaced by activating Reynolds stresses

 h_{max}/η is the transition sensor in the $\ell^2 - \omega$ model

