M What is different about transition modeling?
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- Many non-local and global parameters

- Interface region with turbulence model is weird
=» Lots of babies, less bathwater

- Less physics-based, more data-driven (by construction)
- Less theory guidance (e.g. can’t hang our hats on homogeneous turbulence)
- Feature selection is harder, and more empirical/intuitive

- BUT, there is a much higher possibility of running DNS for most (all) regimes of
interest
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* Variables are more operational
* Interfacing of turbulence and
transition models is critical !!
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(c) T3C1: Optimal ~ (d) T3C1: Model ~




M Feature to help determine transition onset
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Praisner and Clark (J. Turbomachinery, 2007) gave the correlation

Tv Physics-based non-
dimensionalization
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Freestream quantities are extracted from a constant wall distance.

Then, we have

Applying a conservative bound
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M Reducing extrapolation in feature space via feature design
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M Reducing extrapolation in feature space via feature design
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Learning & Inference Assisted by Feature Space

Engineering (LIFE)
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M Feature(s) to identify laminar/turbulent regions
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Compare v and v;. What about the viscous sublayer, though?

Compare d and #; to see if d is significantly larger. For k-w model, O(¢;) = O(Vk/w)

Mathematically bound both the features as:
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« Too many features over-specify physical conditions and reduce generalizability

« Too few features can result in lower predictive accuracy even for the training cases




AEROSPACE
ENGINEERING

UNIVERSITY OF MICHIGAN

1.0

0.8

0.6

0.4

0.2 1

0.0

1.0

0.8

0.6

0.2 1

0.0

How does the feature-space look like?
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For all plots:
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Prediction on turbine cascade (Model trained on only 2 flat
plate cases — T3A, T3C1)
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