

What is different about transition modeling?

- Many non-local and global parameters
- Interface region with turbulence model is weird
 - → Lots of babies, less bathwater
- Less physics-based, more data-driven (by construction)
- Less theory guidance (e.g. can't hang our hats on homogeneous turbulence)
- Feature selection is harder, and more empirical/intuitive
- BUT, there is a much higher possibility of running DNS for most (all) regimes of interest

A thought experiment

$$\frac{Dk}{Dt} = 2\nu_T |S|^2 \gamma - C_\mu k\omega + \partial_j \left[\left(\nu + \frac{\nu_T}{\sigma_k} \right) \partial_j k \right]
\frac{D\omega}{Dt} = 2C_{\omega 1} |S|^2 - C_{\omega 2} \omega^2 + \partial_j \left[\left(\nu + \frac{\nu_T}{\sigma_\omega} \right) \partial_j \omega \right]
\frac{D\gamma}{Dt} = \partial_j \left[\left(\frac{\nu}{\sigma_l} + \frac{\nu_T}{\sigma_\gamma} \right) \partial_j \gamma \right] + P_\gamma - E_\gamma$$

- Variables are more operational
- Interfacing of turbulence and transition models is critical!!

A thought experiment

Feature to help determine transition onset

$$Re_{\Omega} = rac{\Omega d^2}{2.188
u} \qquad \max_{d} Re_{\Omega} pprox Re_{ heta}$$

Physics-informed choice of features

Praisner and Clark (J. Turbomachinery, 2007) gave the correlation

$$heta_{
m tr} pprox \sqrt{rac{7
u}{9\omega_{\infty}}}$$

Physics-based nondimensionalization

Then, we have
$$rac{Re_{ heta}}{Re_{ heta, ext{tr}}}pprox \max_{d}rac{Re_{\Omega}}{U_{\infty} heta_{ ext{tr}}/
u}pprox \max_{d}rac{\Omega d^2\sqrt{9\omega_{\infty}}}{U_{\infty}\sqrt{7
u}}$$

Freestream quantities are extracted from a constant wall distance.

Applying a conservative bound

$$\eta_1 = \min\left(rac{d^2\Omega\sqrt{9\omega_\infty}}{U_\infty\sqrt{7
u}},3
ight)$$

Bounded features

Reducing extrapolation in feature space via feature design

$$oldsymbol{\eta} = \left\{
u_t,
u
ight\} \ oldsymbol{\eta} = \left\{ rac{
u_t -
u_{t, ext{min}}}{
u_{t, ext{max}} -
u_{t, ext{min}}}, rac{
u -
u_{ ext{min}}}{
u_{ ext{max}} -
u_{ ext{min}}}
ight\} \ oldsymbol{\eta} = \left\{ rac{
u_t}{
u}
ight\} \ oldsymbol{\eta} = \left\{ rac{
u +
u_t}{
u}
ight\} \ oldsymbol{\eta} = \left\{ rac{
u}{
u_t +
u}
ight\}$$

$$oldsymbol{\eta} = \left\{rac{
u^n}{
u^n_t +
u^n}
ight\}, \quad oldsymbol{\eta} = \left\{\left(rac{
u}{
u_t +
u}
ight)^{1/n}
ight\}, \quad oldsymbol{\eta} = \left\{rac{\log(
u)}{\log(
u_t) + \log(
u)}
ight\}, \ldots$$

Reducing extrapolation in feature space via feature design

$$oldsymbol{\eta} = \left\{
u_t,
u
ight\} \ oldsymbol{\eta} = \left\{ rac{
u_t -
u_{t, ext{min}}}{
u_{t, ext{max}} -
u_{t, ext{min}}}, rac{
u -
u_{ ext{min}}}{
u_{ ext{max}} -
u_{ ext{min}}}
ight\} \ oldsymbol{\eta} = \left\{ rac{
u_t}{
u}
ight\} \ oldsymbol{\eta} = \left\{ rac{
u +
u_t}{
u}
ight\} \ oldsymbol{\eta} = \left\{ rac{
u}{
u_t +
u}
ight\}$$

Interpolation in feature space can give you extrapolation in physical space

Learning & Inference Assisted by Feature Space Engineering (LIFE)

Feature(s) to identify laminar/turbulent regions

Compare ν and ν_t . What about the viscous sublayer, though?

Compare d and ℓ_t to see if d is significantly larger. For k- ω model, $\mathcal{O}(\ell_t) = \mathcal{O}(\sqrt{k}/\omega)$

Mathematically bound both the features as:

$$\eta_2 = rac{d}{d+\sqrt{k}/\omega}$$

$$\eta_3 = rac{
u}{
u_t +
u}$$

- Too many features over-specify physical conditions and reduce generalizability
- Too few features can result in lower predictive accuracy even for the training cases

How does the feature-space look like?

Prediction on turbine cascade (Model trained on only 2 flat plate cases – T3A, T3C1)

Heat transfer coefficient for MUR224

Heat transfer coefficient for MUR129

Heat transfer coefficient for MUR241