skip to content

NASA Logo

Langley Research Center

Turbulence Modeling Resource

 

The Explicit Algebraic Stress k-omega Turbulence Model

This web page gives detailed information on the equations for various versions of Explicit Algebraic Stress Models (EASM) in k-omega form. Note: EASMs are also known as Explicit Algebraic Reynolds Stress Models (EARSM) and Algebraic Reynolds Stress Models (ARSM), but the monikers EASM, EARSM, and ARSM refer to the same thing. EASMs as a class have been developed by several independent groups over the years. As a result, it is difficult to present the many variations completely and cohesively. Currently, only a small subset is given. If any particular variant has been overlooked, please report it to the page curator. It should also be noted that the distinction is drawn between nonlinear EASMs (for which expansion coefficients are extracted directly from Reynolds stress transport equations) and other types of nonlinear eddy-viscosity models (not described on this page). See Phil. Trans. R. Soc. A (2007) 365, pp. 2389-2418.

Nonlinear EASMs are fundamentally different from linear eddy viscosity models in the equation for obtaining the modeled turbulent stresses in the Reynolds-averaged or Favre-averaged Navier-Stokes equations. Linear models use the Boussinesq assumption for the constitutive relation:

\tau_{ij} = 2 \mu_t \left(S_{ij} - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) -
  \frac{2}{3} \rho k \delta_{ij}
For nonlinear EASMs, this equation is altered to include additional (nonlinear) terms, as detailed below. Thus, including nonlinear turbulence models like EASM is not simply a matter of computing \mu_t alone. One must also insure that the turbulent stress terms \tau_{ij} are computed appropriately to include the additional nonlinear components in the Navier-Stokes equations.

Unless otherwise stated, for compressible flow with heat transfer this model is implemented as described on the page Implementing Turbulence Models into the Compressible RANS Equations, with perfect gas assumed and Pr = 0.72, Prt = 0.90, and Sutherland's law for dynamic viscosity.

Return to: Turbulence Modeling Resource Home Page


 
 

None of the EASM k-omega versions listed here are considered "standard".
 

Nonlinear EASM k-omega (2005) Model (EARSMko2005)

This model is typically known as the explicit algebraic Reynolds stress model, or EARSM (with an additional "R" in its name). Developed by Hellsten, Wallin, and Johansson, its main references are:

In this model, the turbulent stress relationship can be given by:

\tau_{ij} = 2 \mu_t \left(S_{ij} - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) -
  \frac{2}{3} \rho k \delta_{ij} - a_{ij}^{(ex)} \rho k
where
a_{ij}^{(ex)} = \beta_3 \left( W_{ik}^*W_{kj}^* - \frac{1}{3} II_{\Omega} \delta_{ij} \right)
  + \beta_4 \left( S_{ik}^*W_{kj}^* - W_{ik}^*S_{kj}^* \right)
  + \beta_6 \left( S_{ik}^*W_{kl}^*W_{lj}^* + W_{ik}^*W_{kl}^*S_{lj}^* - II_{\Omega}S_{ij}^* - \frac{2}{3} IV \delta_{ij} \right)
  + \beta_9 \left( W_{ik}^*S_{kl}^*W_{lm}^*W_{mj}^* - W_{ik}^*W_{kl}^*S_{lm}^*W_{mj}^* \right)

Note that for 2-D flows, the constitutive model can, if desired (choosing a different set of basis terms) be simplified to:

a_{ij}^{(ex,2D)} = \beta_4^{(2D)} \left( S_{ik}^*W_{kj}^* - W_{ik}^*S_{kj}^* \right)

The two-equation model (written in conservation form) is given by the following:

\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_j k)}{\partial x_j}
  = \cal P - \beta^* \rho \omega k  + \frac{\partial}{\partial x_j}
\left[\left(\mu + \sigma_k \mu_t \right)\frac{\partial k}{\partial x_j}\right]
\frac{\partial (\rho \omega)}{\partial t} + \frac{\partial (\rho u_j \omega)}{\partial x_j}
  = \frac{\gamma \omega}{k} \cal P -
  \beta \rho \omega^2 + \frac{\partial}{\partial x_j}
  \left[ \left( \mu + \sigma_{\omega} \mu_t \right)
  \frac{\partial \omega}{\partial x_j} \right] +
  \sigma_d \frac{\rho}{\omega} {\rm max} \left( \frac{\partial k}{\partial x_k} \frac{\partial \omega}{\partial x_k}, 0 \right)

where \rho is the density and \mu is the molecular dynamic viscosity, and

P = \tau_{ij} \frac{\partial u_i}{\partial x_j}
S_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)           S_{ij}^* = \frac{\tau}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
W_{ij}^* = \frac{\tau}{2} \left( \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)
\tau = \frac{1}{\beta^* \omega}

and the turbulent eddy viscosity is computed from:

\mu_t = \frac{C_{\mu}}{\beta^*} \frac{\rho k}{\omega}

The variable coefficient C_{\mu} is obtained from:

C_{\mu} = -\frac{1}{2} \left( \beta_1 + II_{\Omega} \beta_6 \right)
However, if the 2-D flow (superscript (2D)) constitutive model is used, then
C_{\mu}^{(2D)} = -\frac{1}{2} \beta_1^{(2D)}
is used instead. Furthermore,
\beta_1 = - \frac{N \left( 2 N^2 - 7 II_{\Omega} \right)}{Q}           \beta_1^{(2D)} = - \frac{6}{5} \left[\frac{N}{N^2 - 2 II_{\Omega} } \right]           \beta_3 = - \frac{12 (IV)}{NQ}
\beta_4 = - \frac{2 \left( N^2 - 2 II_{\Omega} \right)}{Q}           \beta_4^{(2D)} = - \frac{6}{5} \left[\frac{1}{N^2 - 2 II_{\Omega} } \right]           \beta_6 = - \frac{6 N}{Q}           \beta_9 = \frac{6}{Q}
Q = \frac{5}{6} \left( N^2 - 2 II_{\Omega} \right) \left( 2 N^2 - II_{\Omega} \right)
II_{\Omega} = W_{kl}^*W_{lk}^*           IV = S_{kl}^*W_{lm}^*W_{mk}^*
and N is obtained from the solution of a cubic equation. The solution is given by:
N = \frac{A_3'}{3} + \left( P_1 + \sqrt{P_2} \right)^{1/3} + {\rm sign}
   \left( P_1 - \sqrt{P_2} \right) \left| P_1 - \sqrt{P_2} \right|^{1/3}           for           P_2 \geq 0
N = \frac{A_3'}{3} + 2\left( P_1^2 - P_2 \right)^{1/6}
   {\rm cos} \left[ \frac{1}{3} {\rm cos}^{-1} \left( P_1 / \sqrt{ P_1^2 - P_2} \right) \right]           for           P_2 < 0
where
P_1 = \left[ \frac{A_3'^2}{27} + \left( \frac{9}{20} \right) II_{S} - \frac{2}{3} II_{\Omega} \right] A_3'
P_2 = P_1^2 - \left[ \frac{A_3'^2}{9} + \left( \frac{9}{10} \right) II_{S} + \frac{2}{3} II_{\Omega} \right]^3
A_3' = \frac{9}{5} + \frac{9}{4} C_{diff} \left[ {\rm max} \left( 1 + \beta_1^{(eq)} II_S, 0 \right) \right]
II_{S} = S_{kl}^*S_{lk}^*
\beta_1^{(eq)} = - \frac{6}{5} \left[ \frac{N^{(eq)}}{\left(N^{(eq)}\right)^2 - 2 II_{\Omega}} \right]
N^{(eq)} = \frac{81}{20}           C_{diff} = 2.2

Farfield boundary conditions are not specified for this model. However, the reference states that the model is reasonably insensitive to freestream values of k and \omega, provided that excessively high values are avoided.

Solid wall boundary conditions are:

\omega_{wall} = \frac{u_{\tau}^2 S_R}{\nu}
k_{wall} = 0
where
S_R = \left[ \frac{50}{{\rm max} \left(k_s^+, k_{s, min}^+ \right) } \right]^2           for           k_s^+ < 25
S_R = \frac{100}{k_s^+}           for           k_s^+ \geq 25
with k_s^+ specified for rough walls, and for smooth walls:
k_{s, min}^+ = {\rm min} \left[ 4.3 \left(d_1^+ \right)^{0.85}, 8 \right]
and d_1^+ is the inner-scaled wall distance of the first solution point next to the solid wall.

The constants in the scale-determining k-\omega model are determined via:

C = f_{mix} C_1 + \left(1-f_{mix}\right) C_2
where C represents any of the model coefficients, and
f_{mix} = {\rm tanh} \left( 1.5 \Gamma^4 \right)
\Gamma = {\rm min} \left[ {\rm max} \left( \Gamma_1, \Gamma_2 \right), \Gamma_3 \right]
\Gamma_1 = \frac{\sqrt{k}}{\beta^* \omega d}
\Gamma_2 = \frac{500 \nu}{\omega d^2}
\Gamma_3 = \frac{20 k}{{\rm max} \left[ \frac{d^2}{\omega} \left(
   \frac{\partial k}{\partial x_k} \frac{\partial \omega}{\partial x_k}
   \right) , 200 k_{\infty} \right]}
where d is the distance to the nearest wall. The coefficient values are:
\gamma_1 = 0.518           \gamma_2 = 0.44
\beta_1 = 0.0747           \beta_2 = 0.0828
\sigma_{k1} = 1.1           \sigma_{k2} = 1.1
\sigma_{\omega 1} = 0.53           \sigma_{\omega 2} = 1.0
\sigma_{d 1} = 1.0           \sigma_{d 2} = 0.4
\beta^* = 0.09

 

Nonlinear EASM k-omega (2005) Model with Curvature Correction (EARSMko2005-CC)

This model is the same as the (EARSMko2005), with the exception that

W_{ij}^* = \frac{\tau}{2} \left( \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)
  - \left( \frac{\tau}{A_0} \right) W_{ij}^{*(r)}
where
W_{ij}^{*(r)} = -\varepsilon_{ijk} B_{km} S_{pr}^* \frac{D S_{rq}^*}{Dt} \varepsilon_{pqm}
B_{km} = \frac{II_S^2 \delta_{km} + 12 III_S S_{km}^* + 6 II_S S_{kl}^* S_{lm}^*}{2 II_S^3 - 12 III_S^2}
and A_0 = -0.72, III_S = S_{kl}^* S_{lm}^* S_{mk}^*, and \varepsilon_{ijk} is the Levi-Civita symbol, defined as
\varepsilon_{123} = \varepsilon_{312} = \varepsilon_{231} = 1
\varepsilon_{132} = \varepsilon_{213} = \varepsilon_{321} = -1
with all other \varepsilon_{ijk} zero.

The references for this curvature correction are:


 

Nonlinear EASM k-omega (2005) Model with Better Approximation for 3-D Flows (EARSMko2005a), (EARSMko2005a-CC)

The equations are the same as (EARSMko2005) or (EARSMko2005-CC), with the exception that N gets augmented by an additional term:

N_{improved} = N + \frac{162 \left[ IV^2 + \left( V - \frac{1}{2} II_S II_{\Omega} \right) N^2 \right]}
  {20 N^4 \left( N - \frac{1}{2} A_3' \right) - II_{\Omega} \left( 10 N^3 + 15 A_3' N^2 \right)
  + 10 A_3' II_{\Omega}^2}
with
V = S_{kl}^* S_{lm}^* W_{mn}^* W_{nk}^*

The references for this improved 3-D approximation are:


 

Nonlinear EASM k-omega (2003) Model (EASMko2003)

The references for this nonlinear two-equation model are:

However, note that the journal reference (EASMko2001) used different values for two of the constants (\sigma_k = 0.5 and \gamma = 0.575); those listed in the NASA/TM reference (same as below) are considered better, particularly for jet-type flows.

In this model, the turbulent stress relationship is derived based on a three-basis approximation. It is given by:

\tau_{ij} = 2 \mu_t \left(S_{ij} - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}
  + \left[a_2 a_4 \left( S_{ik}W_{kj} - W_{ik}S_{kj}\right) - 2 a_3 a_4 \left(S_{ik}S_{kj} - \frac{1}{3}S_{kl}S_{lk}\delta_{ij}\right)
  \right] \right) -
  \frac{2}{3} \rho k \delta_{ij}

The two-equation model (written in conservation form) is given by the following:

\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_j k)}{\partial x_j}
  = \cal P - f_{\beta^*} \rho \omega k  + \frac{\partial}{\partial x_j}
\left[\left(\mu + \sigma_k \mu_t \right)\frac{\partial k}{\partial x_j}\right]
\frac{\partial (\rho \omega)}{\partial t} + \frac{\partial (\rho u_j \omega)}{\partial x_j}
  = \frac{\gamma \omega}{k} \cal P -
  \beta \rho \omega^2 + \frac{\partial}{\partial x_j}
  \left[ \left( \mu + \sigma_{\omega} \mu_t \right)
  \frac{\partial \omega}{\partial x_j} \right]

where

P = \tau_{ij} \frac{\partial u_i}{\partial x_j}
S_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)
W_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)

and the turbulent eddy viscosity is computed from:

\mu_t = C_{\mu}^* \frac{\rho k}{\omega}

where \rho is the density and \mu is the molecular dynamic viscosity.

The variable coefficient C_{\mu}^* is obtained by solving the cubic equation:

(-C_{\mu}^*)^3 + p(-C_{\mu}^*)^2 + q(-C_{\mu}^*) + r = 0

where

p = - \frac{\gamma_1^*}{\eta^2 \tau^2 \gamma_0^*}
q = \frac{1}{(2 \eta^2 \tau^2 \gamma_0^*)^2} \left( \gamma_1^{*2} - 2 \eta^2 \tau^2 \gamma_0^* a_1
  -\frac{2}{3} \eta^2 \tau^2 a_3^2 + 2 R^2 \eta^2 \tau^2 a_2^2 \right)
r = \frac{\gamma_1^* a_1}{(2 \eta^2 \tau^2 \gamma_0^*)^2}

The correct root to choose from this cubic equation is the root with the lowest real part. The degenerate case when \eta \rightarrow 0 must be avoided. The appendix of Journal of Aircraft, Vol. 38, No. 5, 2001, pp. 904-910, https://doi.org/10.2514/2.2850 provides an algorithm for determining this root, as follows.

If \eta^2 \tau^2 < 1 \times 10^{-6}, then

C_{\mu}^* = \frac{\gamma_1^* a_1}{\gamma_1^{*2} - 2 \lbrace W^2 \rbrace \tau^2 a_2^2}
Otherwise, define:
a \equiv q - \frac{p^2}{3}
b \equiv \frac{1}{27} \left( 2 p^3 - 9 p q + 27 r \right)
d \equiv \frac{b^2}{4} + \frac{a^3}{27}

If d > 0, then

t_1 = \left( -\frac{b}{2} + \sqrt{d} \right)^{1/3}
t_2 = \left( -\frac{b}{2} - \sqrt{d} \right)^{1/3}
C_{\mu}^* = -{\rm min} \left( -\frac{p}{3} + t_1 + t_2, -\frac{p}{3} -\frac{t_1}{2} - \frac{t_2}{2} \right)

If d \leq 0, then

\theta = {\rm cos}^{-1} \left( - \frac{b/2}{\sqrt{-a^3/27} \right)
t_1 = -\frac{p}{3} + 2 \sqrt{-\frac{a}{3} } {\rm cos} \left( \frac{\theta}{3} \right)
t_2 = -\frac{p}{3} + 2 \sqrt{-\frac{a}{3} } {\rm cos} \left( \frac{2 \pi}{3} + \frac{\theta}{3} \right)
t_3 = -\frac{p}{3} + 2 \sqrt{-\frac{a}{3} } {\rm cos} \left( \frac{4 \pi}{3} + \frac{\theta}{3} \right)
C_{\mu}^* = -{\rm min} \left( t_1 , t_2 , t_3 \right)

In this model, C_{\mu}^* is limited to be no smaller than 0.0005.

Other parameters are:

\tau \equiv 1 / \omega
\eta^2 = \lbrace S^2 \rbrace = S_{ij}S_{ij}
\lbrace W^2 \rbrace = -W_{ij}W_{ij}
R^2 = - \frac{\lbrace W^2 \rbrace}{\lbrace S^2 \rbrace}           a_1 = \frac{1}{2} \left( \frac{4}{3} - C_2 \right)
a_2 = \frac{1}{2} \left( 2 - C_4 \right)           a_3 = \frac{1}{2} \left( 2 - C_3 \right)
a_4 = \tau \left[ \gamma_1^* - 2 \gamma_0^* \left( -C_{\mu}^* \right) \eta^2 \tau^2 \right]^{-1}
\gamma_0^* = \frac{C_1^1}{2}           \gamma_1^* = \frac{1}{2} C_1^0 + \left( \frac{C_{\epsilon 2} - C_{\epsilon 1}}{C_{\epsilon 1} - 1} \right)

The function f_{\beta^*} is given by:

f_{\beta^*} = 1           when           \chi_k \leq 0
f_{\beta^*} = \frac{1 + 680 \chi_k^2}{1 + 400 \chi_k^2}           when           \chi_k > 0

where

\chi_k = \frac{C_{\mu}^2}{\omega^3} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}

The P term in the k-equation is limited, replaced by:

{\rm min}(P, 20 f_{\beta^*} \rho \omega k)
Also, the variables \tau_{11}, \tau_{22}, and \tau_{33} (as defined) are all limited to be negative (this is the realizability constraint).

The farfield boundary conditions given in this reference are:

\overline k_{farfield} = \frac{k_{farfield}}{a_{ref}^2} = 9 \times 10^{-9}
\overline \omega_{farfield} = \frac{\omega_{farfield}}{(\rho_{ref} a_{ref}^2/ \mu_{ref} )} = 9 \times 10^{-8}
where \rho_{ref}, a_{ref}, and \mu_{ref} are the reference (typically freestream) speed of sound, density, and viscosity, respectively.

The solid wall boundary conditions are the same as those recommended in Menter, F. R., AIAA Journal, Vol. 32, No. 8, August 1994, pp. 1598-1605, https://doi.org/10.2514/3.12149:

\omega_{wall} = 10 \frac{6 \nu}{\beta (\Delta d_1)^2}
k_{wall} = 0

where \Delta d_1 is the distance from the wall to the nearest field solution point.

The constants are:

C_{\epsilon 1} = 1.44           C_{\epsilon 2} = 1.83           C_1^0 = 3.4           C_1^1 = 1.8
C_2 = 0.36           C_3 = 1.25           C_4 = 0.4           C_{\mu} = 0.0895
\sigma_k = 1           \sigma_{\omega} = \sqrt{C_{\mu}}(\beta - \gamma)/(\kappa^2)
\kappa = 0.41           \gamma = 0.53           \beta = 0.83

 

Nonlinear EASM k-omega Model with Approximate Strain-related Source Term (EASMko2003-S, EASMko2001-S)

The equations are the same as given above (EASMko2003) or (EASMko2001), with the exception that the production term P (in both equations) is approximated with the following:

P = 2 \mu_t \eta^2 = 2 \mu_t S_{ij} S_{ij}

The references are the same as listed above for (EASMko2003).
 

Return to: Turbulence Modeling Resource Home Page


 
 


Recent significant updates:
6/30/2015 - mention Pr, Pr_t, and Sutherland's law

Privacy Act Statement

Accessibility Statement

Responsible NASA Official: Ethan Vogel
Page Curator: Clark Pederson
Last Updated: 11/08/2021